
Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

35

API Malware Analysis: Exploring Detection and Forensics Strategies For

Secure Software Development

Husam Alalloush1*, Wasim A. Ali1

husamalalloush@gmail.com, wasim.ali@poliba.it

1Chaitanya University, India, 2Politecnico di Bari, Italy

Abstract

 API Malware Analysis and Forensics is a key field of research in cybersecurity. It is critical to have strong

defenses in place to detect and prevent malware attacks. APIs, since they can have disastrous consequences. The

article aims to provide a thorough overview of the current state of the art in API malware analysis and forensics, as

well as the methods and equipment used to discover, analyses, and combat API-based malware assaults. Also covered

will be an overview of the various approaches for identifying malware in APIs, such as static and dynamic analysis.

The primary purpose of this work is to offer a comprehensive overview of API malware analysis and investigation,

spanning numerous approaches and instruments used to detect and investigate API malware. This study also

emphasizes the importance of taking proactive steps to prevent API-based malware attacks, such as testing APIs for

vulnerabilities regularly, implementing security protocols, and deploying cutting-edge security technologies to detect

and mitigate API-based malware attacks.

1. INTRODUCTION

An application programming interface (API) is a

collection of protocols, procedures, and tools that

allows software developers to communicate and

collaborate. APIs provide a standard method for

exchanging data and services across multiple software

components, irrespective of the underlying hardware

and operating systems [1].

APIs play a crucial role in creating modular and

scalable applications in software development. Using

APIs, developers can deconstruct complex systems

into smaller, independent components that can be

independently developed, evaluated, and deployed.

APIs also enable developers to utilise existing code

and services, which saves time and reduces

development costs [2]. APIs can be utilised in

numerous software applications, including web

applications, mobile apps, and desktop software.

Typically, they connect disparate software systems,

such as a front-end web application, to a back-end

database [3].

However, APIs can also represent a potential security

risk. Malicious actors can exploit API design and

implementation vulnerabilities to initiate API malware

mailto:husamalalloush@gmail.com
mailto:wasim.ali@poliba.it

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

36

attacks. Therefore, developers and security

professionals must implement appropriate security

measures and undertake regular API security testing to

ensure the integrity of their systems [4].

2. API MALWARE ATTACKS: A REAL

DANGER

API security has distinct characteristics that

differentiate it from traditional security. Firstly, APIs

introduce a challenge because they employ various

protocols and multiple endpoints, unlike traditional

networks that mainly focus on protecting specific ports

like HTTP (port 80) and HTTPS (port 443). As APIs

evolve, even a single API can become a complex

security task [3].

Secondly, APIs in a DevOps context often undergo

frequent changes, making it difficult for traditional

security tools, such as Web Application Firewalls

(WAFs), to handle their elasticity. These tools require

manual tuning and reconfiguration whenever an API

changes, which is prone to errors and consumes

valuable resources and time [3].

Thirdly, clients accessing APIs are not limited to web

browsers. Native and mobile applications and other

services and software components often interact with

service or microservice APIs. Traditional web security

technologies relying on browser verification cannot

effectively identify harmful bots in automated traffic

originating from API endpoints, as these clients do not

utilize browsers [3]. It's important to note that

examining incoming requests alone does not guarantee

the detection of attacks since many API abuse attacks

can mimic legitimate requests.

3. THREAT OF API MALWARE ATTACKS

API

API malware attacks pose a significant threat in the

realm of cybersecurity. These attacks utilize APIs to

inject and execute malicious code on a targeted

system. The malware is often concealed within API

calls, exploiting vulnerabilities to gain unauthorized

access or control over the system. API malware attacks

can manifest in various ways, including remote code

execution, credential theft, data exfiltration, and DDoS

attacks [22][10][12].

Remote code execution involves injecting malware

through an API call, enabling attackers to execute code

on the targeted system remotely. Credential theft

occurs when malware is employed to pilfer user

credentials through API calls, such as usernames and

passwords. Data exfiltration involves extracting

sensitive data from the targeted system using API

calls. Additionally, through APIs, malware can initiate

Distributed Denial of Service (DDoS) attacks,

inundating the targeted system with excessive traffic

and disrupting normal operations.

To mitigate the risk of API malware attacks,

developers and security professionals must implement

robust security measures and regularly conduct API

security testing.

4. API MALWARE ANALYSIS AND

FORENSICS: A CRUCIAL FIELD OF STUDY

API malware analysis and forensics play a critical role

in detecting, analyzing, and mitigating the impact of

API malware attacks. These attacks can lead to severe

consequences for organizations, including data

breaches, system downtime, financial losses, and

damage to their reputation [10][22]. Conducting

effective API malware analysis and forensics is crucial

in identifying the source and extent of the attack,

recovering lost or stolen data, and implementing

measures to prevent future attacks.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

37

API malware analysis involves examining APIs and

their associated code to identify indicators of malware,

such as unusual API calls or unexpected system

behavior. Detecting malware can be challenging since

it may be disguised or obfuscated to evade detection.

On the other hand, API malware forensics involves

conducting a thorough investigation of the attack to

determine its root cause and develop preventive

measures against similar attacks in the future. This

process may include analyzing system logs, studying

network traffic, and examining other digital evidence

to reconstruct the attack and assess the extent of the

damage [22].

The significance of API malware analysis and

forensics has grown in parallel with the increasing use

of APIs in software development. As more

organizations rely on APIs to connect their systems

and services, the potential attack surface for API

malware attacks has also expanded [22][10]. In

conclusion, organizations must prioritize API malware

analysis and forensics to safeguard against the

detrimental effects of API malware attacks. By

investing in these practices, organizations can uphold

the integrity and security of their APIs and proactively

prevent future attacks [22].

5. TYPES OF API MALWARE ATTACKS

Organizations should be aware of various common

types of API malware attacks that pose a risk to their

systems [8][9][12]. These attacks include:

API Spoofing: Attackers create fake APIs that imitate

legitimate ones. When users connect to these fake

APIs, attackers can steal user credentials or inject

malware into the user's system.

API Injection: Malicious code is inserted into valid

API calls to execute it on the targeted system. This can

be achieved by exploiting API input flaws or

intercepting and modifying API calls using man-in-

the-middle attacks.

API Parameter Tampering: Attackers modify

parameters in API calls to gain unauthorized access or

manipulate data. This can be done by intercepting and

modifying API calls or using automated tools to

manipulate API inputs.

API Denial-of-Service (DoS) Attacks: APIs are

overwhelmed with excessive requests, causing them to

crash or become unresponsive. This can be achieved

by flooding the API with requests using automated

tools or exploiting vulnerabilities in the API's design

or implementation.

API Phishing: Users are deceived into connecting to

fake APIs that appear legitimate. When users enter

their credentials into these fake APIs, attackers steal

them for future use.

API Remote Code Execution (RCE): API RCE

attacks leverage weaknesses in APIs to execute

arbitrary code on the targeted machine. This can be

accomplished by using a malicious payload in an API

call or exploiting vulnerabilities in the API's input

validation or authentication mechanisms.

The number of APIs deployed within organizations is

rapidly increasing, with a survey showing that 26% of

businesses now use at least twice as many APIs

compared to the previous year. This surge in API

usage has made APIs a prime target for attacks [9]. It

is crucial for organizations to be aware of these types

of API malware attacks and implement appropriate

security measures to protect their systems and data

from potential vulnerabilities and unauthorized access.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

38

6. EXPLANATION OF HOW API MALWARE

CAN BE USED TO EXECUTE MALICIOUS

CODE

API malware can exploit vulnerabilities in

software components that utilize APIs to execute

malicious code [13][14]. Attackers hide malware

within API calls, enabling them to inject and

execute malicious code on a targeted system. One

common method is remote code execution (RCE),

where attackers send a payload containing

malicious code through an API. This payload is

executed on the system, granting the attacker

remote access and control [13][14]. Another

technique is API injection, where attackers inject

malicious code into legitimate API calls, taking

advantage of API input flaws or intercepting and

modifying API calls through man-in-the-middle

attacks [22]. API malware can also execute

malicious code through credential theft, data

exfiltration, and DDoS attacks. For instance,

API malware can steal user credentials through

API calls and subsequently utilize those

credentials to execute malicious code on the

targeted system [15][10].

To protect against API malware attacks that

execute malicious code, organizations should

implement secure API design, authentication and

authorization mechanisms and monitor API

activity for suspicious behaviour. Regular API

security testing and analysis can also help detect

and prevent API malware attacks [10][22].

Examples of real-world API malware

attacks:

Facebook API Malware Attack: In 2018,

attackers exploited an API vulnerability on

Facebook to steal access tokens and compromise

more than 30 million user accounts. The attack

leveraged the "View As" feature to access and

control user accounts [4].

Twitter API Malware Attack: In 2013, a

malware attack on Twitter's APIs resulted in the

theft of user data, including passwords and email

addresses. Attackers exploited a cross-site

scripting (XSS) flaw in Twitter's mobile app [5].

Uber API Malware Attack: In 2016, attackers

targeted Uber's APIs, compromising the personal

data of over 57 million users and drivers. The

attack exploited an API vulnerability to gain

unauthorized access to a database, which was then

downloaded and encrypted [6].

Salesforce API Malware Attack: In 2018, a

malware attack on Salesforce's APIs led to the

theft of customer data from multiple Salesforce

customers. Attackers exploited an API

vulnerability to access customer data, using it for

phishing attacks and other fraudulent activities.

Equifax API Malware Attack: In 2017, a

malware attack on Equifax's APIs exposed

personal data belonging to over 143 million

customers. Attackers exploited an API

vulnerability to access customer data, which was

downloaded and exfiltrated [7].

These real-world examples highlight the

damaging consequences of API malware attacks

and emphasize the importance of robust API

security measures to safeguard sensitive data and

prevent unauthorized access.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

39

7. TECHNIQUES FOR API MALWARE

DETECTION

API malware can be detected using various

methods, including signature-based detection,

behaviour-based detection, and machine learning-

based detection [2][1].

Signature-based detection: This method

involves searching for patterns or signatures of

known malware within API requests. Signatures,

which are derived from well-known malware, are

used to identify related malware in API calls.

While effective against known malware,

signature-based detection may fail to detect new

or undiscovered threats.

Behaviour-based detection: This approach

focuses on analyzing the behaviour of API calls to

detect potential malware. Behaviour-based

detection involves creating a baseline by profiling

normal API call behaviour and then identifying

any deviations from the baseline. This method can

detect new and unknown malware, but it may also

produce false positives.

Machine learning-based detection: In this

method, machine learning techniques identify

abnormal patterns in API calls. Machine learning

algorithms are trained on typical API call

behaviour to detect deviations from the norm.

This approach can detect brand-new and

unidentified malware but may also result in false

positives and negatives.

The advantages and disadvantages of signature-

based and machine learning-based, techniques are

summarized in Table 1.

Table 1. signature-based and machine learning-based

advantages and disadvantages.

Feature Signature-based Machine Learning-

based

Advantage

Reduced runtime, Easy

to implement

More effective in finding

polymorphic malware,

Can detect unknown

malware

Disadvantage

Unknown malware

cannot be detected,

Requires regular

updates

Requires a significant

amount of labeled

training data, Can be

computationally

expensive

Accuracy High, Low

High, Can be high or low

depending on the model

False positives Low, High

Low, Can be high

depending on the model

False negatives High, Low

High, Can be low

depending on the model

8. TECHNIQUES OF API MALWARE

ANALYSIS.

1- Static Analysis: Static analysis involves examining

the code within API calls without executing it. This

technique typically relies on automated tools to scan

the code for known malicious patterns, vulnerabilities,

or code obfuscation techniques. It analyzes the code's

structure, syntax, and content to identify potential

security issues. Static analysis tools may use pattern

matching, rule-based analysis, or abstract

interpretation to detect known malware signatures or

suspicious code constructs. However, static analysis

may struggle with detecting sophisticated or

previously unseen malware as it relies on pre-existing

knowledge of known patterns.

2- Dynamic Analysis: Dynamic analysis involves

executing API calls in a controlled environment to

observe their behavior and interactions. It captures

runtime information and monitors network traffic,

system calls, memory usage, and other runtime

characteristics. By analyzing the behavior of API calls

during execution, dynamic analysis can identify

abnormal or malicious activities, such as unauthorized

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

40

data access, privilege escalation, or suspicious

network communications. Dynamic analysis can

provide insights into runtime code execution, data

flow, and interactions with the underlying system. It

effectively detects behavior-based attacks and

identifying unknown or zero-day threats that may

evade static analysis. However, dynamic analysis can

be resource-intensive and time-consuming, especially

when dealing with large-scale or complex systems.

3- Sandboxing: Sandboxing involves running API

calls in an isolated and controlled environment known

as a sandbox. The sandbox provides a virtualized or

containerized environment that emulates the necessary

system resources and dependencies to execute API

calls safely. By isolating the execution of API calls,

sandboxes prevent potential damage to the underlying

system. Sandboxing allows analysts to observe the

behavior of API calls in a controlled environment,

monitoring system interactions, file system

modifications, network communications, and other

runtime activities. It helps identify potentially

malicious behaviors or activities that might harm the

host system. However, advanced malware may be

designed to evade sandbox detection by detecting the

presence of a sandbox environment or by employing

techniques to delay malicious activities.

4- Memory Forensics: Memory forensics involves

analyzing a system's volatile memory (RAM) to gather

evidence and extract information related to security

incidents or malicious activities. In analyzing API

calls, memory forensics can provide valuable insights

into runtime behavior, data structures, and potential

code injections or modifications performed by

malware. By examining the memory space used by an

application or API, analysts can uncover artefacts,

such as injected code, hooks, or altered data, that may

indicate the presence of malicious code. Memory

forensics can also help identify malware persistence

mechanisms or uncover encryption keys and

passwords used by the malicious code. Including

memory forensics in API call analysis can enhance the

depth of investigation and aid in detecting advanced or

memory-based attacks.

5- API Fuzzing: API fuzzing is a technique used to

test the robustness and security of APIs by sending a

large volume of malformed or unexpected inputs to an

API and monitoring its response. The goal is to

identify vulnerabilities or weaknesses in the API

implementation that attackers could exploit. By

fuzzing API inputs, analysts can uncover security

flaws, such as buffer overflows, injection

vulnerabilities, or error-handling issues that might lead

to unauthorized code execution or other forms of API

abuse. While API fuzzing is primarily used for testing

and security assessment, it can indirectly aid in

identifying potential malicious code injection points or

vulnerabilities within API calls. Incorporating API

fuzzing as part of the analysis can help identify

weaknesses and harden the security of APIs.

Combining these techniques is often employed for

comprehensive API call analysis and identifying

malicious code. Static analysis is useful for quickly

identifying known patterns and vulnerabilities, while

dynamic analysis provides a deeper understanding of

runtime behavior. Sandboxing offers a controlled

environment for executing and observing API calls.

These techniques are often complemented with other

security measures, such as threat intelligence, anomaly

detection, and continuous monitoring, to enhance the

overall effectiveness of API call analysis and mitigate

the risk of malicious code execution.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

41

9. 4.API FORENSICS

API forensics is the process of investigating and

examining APIs to determine if they have been

exploited, misused, or compromised. It involves

applying forensic techniques and technologies to

uncover security flaws, gather evidence for legal

purposes, and collect relevant data from both the APIs

themselves and the systems connected to them. API

forensics plays a crucial role in today's interconnected

world, where systems and platforms heavily rely on

APIs for seamless integration [16][20].

The significance of API forensics stems from the

increasing reliance on APIs to enable communication

and data exchange between various systems, services,

and applications. APIs serve as the interface for these

interactions, making them an attractive target for

attackers seeking to exploit vulnerabilities or gain

unauthorized access. By conducting API forensics,

investigators can thoroughly analyze the APIs and

associated systems to identify any signs of

compromise, abuse, or security breaches.

API forensics involves several key activities and

techniques. These may include:

Data Collection: Gathering relevant information and

data from the APIs and the systems they connect to.

This includes obtaining API logs, network traffic data,

server logs, and any other available artifacts that may

hold evidence of malicious activity or security

incidents.

Traffic Analysis: Analyzing the network traffic

generated by the API calls, including request and

response data. This analysis can help identify

anomalous patterns, suspicious activities, or

unauthorized access attempts.

Code Review: Reviewing the API code, including the

endpoints, authentication mechanisms, input

validation, and error handling. This examination aims

to identify any vulnerabilities, insecure coding

practices, or potential attack vectors that could be

leveraged by malicious actors.

API Access and Usage Analysis: Examining access

controls, authentication mechanisms, and usage

patterns of the APIs. This analysis helps identify any

unauthorized access, abnormal usage patterns, or

misuse of the APIs.

Incident Reconstruction: Reconstructing the sequence

of events leading up to a security incident or

compromise involving the APIs. This involves

analyzing various artifacts, such as logs, timestamps,

and system states, to understand the timeline and the

methods used by attackers.

Digital Evidence Preservation: Ensuring the proper

preservation and integrity of digital evidence collected

during the API forensic investigation. This is crucial

for maintaining the admissibility and reliability of the

evidence in potential legal proceedings.

API forensics is valuable not only for detecting and

mitigating security incidents but also for supporting

legal actions. The evidence collected during API

forensic investigations can be used in court cases or

internal disciplinary actions to hold perpetrators

accountable, establish liability, or prove compliance

violations.

As the reliance on APIs continues to grow, the

importance of API forensics becomes even more

significant. By applying forensic techniques and

leveraging appropriate technologies, organizations

can ensure the integrity, security, and trustworthiness

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

42

of their API ecosystems and respond effectively to

potential security incidents.

10. API FORENSICS PROCESS

The API forensics process consists of several essential

steps, each contributing to the comprehensive analysis

of APIs and the identification of security breaches and

attacks. Here is an expansion of each step:

Identification: The first step involves identifying the

APIs utilized within the organization's systems and

platforms. This includes understanding the types of

APIs being used, their specific functionalities, and the

systems they are connected to. It is crucial to have a

clear overview of the API landscape to focus the

forensic investigation effectively.

Collection: Once the APIs have been identified, the

next step is to collect relevant data from these APIs.

This includes gathering API logs, network traffic data,

server logs, and any other available information that

can aid in identifying security breaches and attacks.

The collection process should aim to capture a

comprehensive dataset that covers the period of

interest.

Analysis: The collected data is then subjected to

analysis using forensic techniques and specialized

tools. This involves examining traffic patterns,

analyzing request and response data, identifying

anomalies or abnormal behaviors, and tracing

potential attack vectors. The analysis helps in

understanding the scope and impact of security

breaches, as well as determining the root cause of any

malicious activities.

Evidence Gathering: In API forensics, the focus is on

gathering evidence that can be utilized in legal

proceedings or internal disciplinary actions. This step

involves preserving the collected data in a secure

manner to maintain its integrity and admissibility as

evidence. Proper documentation, including

timestamps, metadata, and chain of custody, should be

established to create an audit trail of the investigation.

The findings and conclusions of the API forensics

analysis should also be documented as part of the

evidence-gathering process.

It's important to note that the API forensics process

may vary depending on the specific requirements,

available resources, and the nature of the investigation.

It may involve additional steps, such as incident

reconstruction or collaboration with legal

professionals. Furthermore, throughout the process,

adherence to best practices and legal requirements,

including data protection and privacy regulations, is

crucial.

By following a systematic API forensics process,

organizations can effectively identify and respond to

security breaches, collect valuable evidence for legal

purposes, and improve the overall security posture of

their API ecosystems.

11. CHALLENGES OF API FORENSICS

API forensics encounters various challenges that

impede its effectiveness. One primary obstacle is the

complexity inherent in modern API architectures,

which often involve multiple levels and components.

This complexity poses difficulties in identifying and

isolating security flaws and attacks. Furthermore, the

forensic investigation process is further complicated

by the reliance on third-party services as the

foundation for APIs, adding intricacy to the analysis

[19][21].

Another challenge is the absence of standardized

forensic methods and tools tailored for API forensics.

While certain tools are available, they are often

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

43

proprietary and not widely adopted. This lack of

standardized tools hinders collaboration and data

sharing among researchers, making it challenging to

collaborate and effectively leverage collective

expertise in API forensics [19][21].

In summary, the challenges of API forensics include

the complexity of contemporary API architectures

with multiple levels and components, as well as the

dependence on third-party services. Additionally, the

absence of standardized forensic methods and tools

further complicates the forensic investigation process,

hindering collaboration and data sharing among

researchers. These challenges highlight the need for

continued research and development to address these

complexities and enhance the effectiveness of API

forensics.

12. TECHNIQUES FOR API FORENSICS

API forensics encompasses retrieving, preserving, and

analysing evidence about attacks targeting APIs. The

following techniques are commonly employed in API

forensics [16][18][19][20][21]:

Memory Dump Analysis: This technique involves

extracting the memory from a machine to identify any

malicious activity. Memory dump analysis is useful

for locating malware that may not exist in the file

system but resides solely in memory. Specialized tools

and methods, such as the Volatility Framework, can be

utilized to analyze memory dumps effectively.

Log Analysis: Log analysis examines system logs for

suspicious activities associated with API-based

attacks. System logs can provide crucial details about

the behaviour of API calls, including timestamps,

source and destination addresses, and the nature of the

operations performed. Both automated tools like Log

Parser and manual analytic methods can be employed

for log analysis.

Network Traffic Analysis: Network traffic analysis

involves monitoring the traffic between systems to

detect any unusual activity related to API-based

attacks. This technique enables the identification of

the origin and destination of API calls and the type of

data being transferred. Specialized tools like

Wireshark are commonly used for network traffic

analysis.

System Profiling: System profiling entails gathering

information about the system's configuration to

identify potential vulnerabilities or weaknesses.

System profiling aims to pinpoint elements susceptible

to API-based attacks by scrutinising software and

hardware configurations. Automated tools such as

OSSEC or manual analysis techniques can be

employed for system profiling.

Evidence Collection: Evidence collection

encompasses properly gathering and preserving

evidence associated with API-based attacks. This

includes collecting system logs, memory dumps, and

network traffic data. Ensuring the meticulous

collection of evidence is essential to ensure its

admissibility in court and its ability to support

potential legal actions if required.

In API forensics, employing these techniques

facilitates the systematic retrieval, analysis, and

preservation of evidence, investigating API-based

attacks and supporting potential legal proceedings.

13. API FORENSICS TOOLS

There are various tools available for conducting API

forensics. Here is an expanded version of the provided

information:

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

44

Volatility Framework: The Volatility Framework is

an open-source memory forensics tool widely used for

API forensics. It enables detecting of malicious

behaviour associated with API-based attacks by

analyzing system memory dumps. With Volatility,

investigators can examine the memory artefacts to

identify signs of compromise or the presence of

malware targeting APIs.

Wireshark: Wireshark is a popular network traffic

analysis tool used for monitoring and analyzing

network traffic in API-based attacks. It captures and

decodes network traffic in real-time, allowing analysts

to study the data transferred during API calls.

Wireshark facilitates identifying any suspicious or

malicious activities, enabling detailed analysis of

network communication related to APIs.

Log Parser: Log Parser is a versatile log analysis tool

for parsing and analyzing system logs relevant to API-

based attacks. It extracts pertinent information from

log files, aiding in understanding API call behaviour

and identifying any anomalies or malicious activities.

Log Parser is valuable in extracting insights from

system logs and facilitating investigation.

OSSEC: OSSEC is a host-based intrusion detection

system commonly used for system profiling and the

detection and prevention of API-based attacks. It

monitors various aspects, such as system logs, file

changes, and network traffic, to identify suspicious

activity. OSSEC generates alerts to notify

administrators when potential API-related threats or

anomalies are detected, contributing to enhanced

security and incident response.

Fiddler: Fiddler is a web debugging proxy tool widely

employed for analyzing and debugging HTTP traffic

associated with API-based attacks. It captures and

analyzes HTTP traffic between clients and servers,

allowing investigators to identify and investigate

malicious activities within the API calls. Fiddler

provides insights into the communication between

clients and APIs, aiding in identifying potential

security issues or vulnerabilities.

These tools serve as valuable assets for conducting

effective API forensics, providing memory analysis,

network traffic monitoring, log analysis, system

profiling, and HTTP traffic inspection capabilities.

Leveraging these tools can significantly enhance the

investigation process and aid in identifying and

responding to API-based security incidents.

14. DISCUSSION AND FUTURE STUDY

API malware analysis and forensics research can

explore several potential directions to enhance

detection and response capabilities. These areas of

study include:

Advancement of Machine Learning-Based

Techniques: Further development of machine

learning-based techniques can lead to more accurate

detection and classification of API-based attacks. By

training models on large datasets of known attack

patterns, researchers can enhance the ability to identify

and categorize malicious API activities with high

precision.

Real-Time Detection and Response Systems: There

is a need for automated systems that can detect API-

based attacks in real-time and respond promptly and

effectively. Developing intelligent algorithms and

frameworks capable of monitoring API traffic and

identifying suspicious behaviours in real-time can

significantly improve incident response and mitigate

the impact of attacks.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

45

Analyzing Encrypted Traffic: As encryption

becomes more prevalent, developing techniques to

analyze encrypted traffic is crucial for detecting and

mitigating API-based attacks. Exploring methods for

identifying suspicious activities within encrypted API

communications can help uncover malicious

intentions and potential security breaches.

Addressing API Security in Emerging

Technologies: The emergence of technologies like

cloud computing and the Internet of Things (IoT)

presents new challenges for API security. Future

research should focus on developing robust security

solutions tailored to these technologies, ensuring that

APIs used in cloud-based systems and IoT

applications are adequately protected.

In terms of implications for software development and

cybersecurity best practices, prioritizing API security

is paramount. Developers should receive training in

secure coding practices and adhere to established

security guidelines. Regular security assessments and

testing should be conducted to identify and address

vulnerabilities in API-based applications, helping to

strengthen the overall security posture.

The industry can proactively address emerging threats

and protect systems and data from API-based attacks

by pursuing these future research directions and

emphasising API security in software development.

15. CONCLUSION

The paper provides a comprehensive examination of

API malware analysis and forensics. It covers various

aspects, including the role of APIs in software

development, the risks associated with API malware

attacks, and the significance of API malware analysis

and forensics. Additionally, it delves into common

types of API malware attacks, techniques for detecting

and analyzing API malware, methods for analyzing

API calls to identify malicious code, and tools utilized

in API forensics.

The study underscores the criticality of API security

and emphasizes the importance of conducting regular

security assessments and testing to identify

vulnerabilities in API-based applications. It stresses

the need for developers to adhere to established

security guidelines, receive training in secure coding

practices, and establish incident response plans to

address API-based attacks effectively.

The paper further advocates for future research in

several key areas. It suggests the development of

automated systems capable of real-time detection of

API-based attacks, techniques for analyzing encrypted

traffic associated with APIs, and security solutions

tailored to emerging technologies like cloud

computing and the Internet of Things (IoT).

Furthermore, it highlights the potential of machine

learning-based techniques in API malware analysis

and forensics. The research should also focus on

evaluating the effectiveness of different API malware

detection and analysis techniques and establishing best

practices for API security. Overall, the paper

emphasizes the significance of API malware analysis

and forensics, provides insights into effective security

measures, and outlines future research directions to

enhance API security and combat emerging threats.

REFERENCES

[1] Kim, D., Kim, T. H., & Yeom, K. (2020). A Survey

on Machine Learning-Based Malware Detection

Using API Call Sequences. Journal of Information

Processing Systems, 16(6), 1422-1435.

[2] Rajesh, R., & Karthick, S. (2020). Malware

detection using API call sequence analysis with deep

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

46

learning techniques. Cluster Computing, 23(2), 1103-

1116.

[3] Chowdhury, S. R., Samanta, S., & Roy, D. (2020).

Malware detection using API call sequences: A

comparative study. In 2020 International Conference

on Artificial Intelligence in Information and

Communication (ICAIIC) (pp. 104-109). IEEE.

[4] Dhiman, G., & Juneja, D. (2019). Malware

detection using API calls and machine learning.

International Journal of Network Security, 21(1), 68-

75.

[5] Khalid, H., Rasool, R., & Mehmood, Z. (2018).

Malware detection using API call sequence and Deep

Learning.

In 2018 15th International Bhurban Conference on

Applied Sciences and Technology (IBCAST) (pp. 21-

26). IEEE.

[6] Youn, C. H., Seo, S. H., & Kim, S. J. (2018). Deep

learning-based malware detection using API call

sequences. In 2018 20th Asia-Pacific Network

Operations and Management Symposium (APNOMS)

(pp. 1-4). IEEE.

[7] Santos, I., Rocha, G., & de Carvalho, A. (2014). A

dynamic feature approach to malware detection using

API calls. In International Symposium on Research in

Attacks, Intrusions, and Defenses (pp. 119-139).

Springer.

[8] Wang, Y., Li, H., & Yu, C. (2017). Malware

detection using API call sequences. Journal of

Ambient Intelligence and Humanized Computing,

8(6), 1117-1124.

[9] Kim, J., Kang, B. J., & Kim, H. (2016). A study on

API-based malware detection using machine learning

techniques. Journal of Information Processing

Systems, 12(1), 66-80.

[10] Seo, S. H., Kim, D. J., & Kim, S. J. (2016). A

malware detection method using API call sequence

and reinforcement learning. In International

Symposium on Ubiquitous Networking (pp. 343-348).

Springer.

[11] Qiao, Y., Yang, Y., He, J., Tang, C., & Liu, Z.

(2014). CbmCBM: free, automatic malware analysis

framework using API call sequences. In Knowledge

Engineering and Management.

[12] Chandola, V., Banerjee, A., & Kumar, V. (2009).

Anomaly detection: A survey. ACM Computing

Surveys (CSUR), 41(3), 1-58.

[13] Acosta, J. C., Mendoza, H., & Medina, B. G.

(2012). An efficient common substrings algorithm for

on-the-fly behavior-based malware detection and

analysis. In Proceedings - IEEE Military

Communications Conference MILCOM.

[14] Ki, Y., Kim, E., & Kim, H. K. (2015). A Novel

Approach to Detect Malware Based on API Call

Sequence Analysis. International Journal of

Distributed Sensor Networks.

[15] Sundarkumar, G. G., & Ravi, V. (2013,

December). Malware detection by text and data

mining. In 2013 IEEE International Conference on

Computational Intelligence and Computing Research.

[16] Yu, H., Sun, X., Chen, S., Tang, F., & Chen, Z.

(2018). Deep learning-based API-call sequence

embedding model for malware detection. Future

Generation Computer Systems, 86, 431-440.

[17] Chen, T., Shu, J., Huang, T., Wang, Y., & Xu, G.

(2020). Malware detection using API call sequences

with recurrent neural networks. IEEE Access, 8,

146029-146039.

[18] Abbas, H., Dsouza, M., Alazab, M., &

Venkatraman, S. (2018). Malware detection using

deep learning techniques based on API call sequences.

In Proceedings of the 2018 IEEE/ACM International

Conference on Advances in Social Networks Analysis

and Mining (pp. 1282-1289). IEEE.

[19] Tang, S., Cao, Y., Huang, H., & Wang, X. (2019).

A malware detection method based on API call

sequences and machine learning. Security and

Communication Networks, 2019.

[20] Wang, Q., Liu, Z., & Xie, T. (2020). Malware

detection using API call sequence and CNN-based

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

47

feature extraction. Journal of Ambient Intelligence and

Humanized Computing, 11(8), 3353-3363.

[21] Liu, Z., Wang, Q., Xie, T., & Li, Y. (2020).

Malware detection using LSTM-based API call

sequence feature extraction. IEEE Access, 8, 160157-

160167.

[22] Liao, Y., Liu, X., & Zhang, Y. (2021). Malware

detection using ensemble learning with deep neural

networks based on API call sequences. IEEE Access,

9, 72091-72100.

