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ABSTRACT 

Membership inference attacks, aiming to determine whether target data belongs to a training dataset through 

machine learning model exploitation, present an escalating privacy threat within the machine learning landscape. This 

study initiates from fundamental theories surrounding the attack and defense mechanisms of machine learning models. 

The paper conducts a thorough analysis of key technical models, elucidating the intricate relationship between attack 

models and potential privacy risks to ensure data privacy security and advance the realm of machine learning 

applications. The introduction covers the adversary model of membership inference attacks, encompassing definitions, 

classifications, and the generation mechanism. Additionally, the paper provides a comprehensive overview and analysis 

of existing membership inference attack algorithms. Practical applications of membership inference attacks are explored, 

followed by the categorization and comparison of defense techniques. The study concludes with a comparative analysis 

of existing attack schemes and their corresponding defense technologies, offering insights into the evolving landscape 

of membership inference attacks in machine learning. The work not only anticipates future research challenges in data 

privacy protection but also establishes a theoretical foundation crucial for addressing data privacy leakage, thereby 

significantly contributing to the progress of machine learning applications. 
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1. INTRODUCTION 

 The rapid evolution of artificial intelligence, 

particularly machine learning theory and technology, 

owes much to the internet's progress, hardware updates, 

extensive data collection, and the advancement of 

intelligent algorithms [1]. Its widespread application in 

diverse fields, including data mining [2], computer 

vision [3] [4], email filtering [5], credit card fraud 

detection [6] [7] [8] [9], and medical diagnosis [10] [11], 

has significantly enhanced efficiency through the 

analysis of large datasets. Despite the convenience and 

intelligence offered by machine learning, the increased 

collection of personal sensitive information, such as 

physiological characteristics, medical records, and social 

networks, has introduced severe challenges to the 

security and privacy of this burgeoning technology. 

Notable incidents, such as the Yahoo data breach in 

2016, a DDOS attack on Microsoft's Skype in 2017, and 

the security flaw in Zoom reported by the Washington 

Post in 2020, underscore the substantial harm caused by 

data privacy and security issues in machine learning 

applications. 

Currently, threats to machine learning security and 

privacy primarily fall into four categories: poisoning 

attacks [12] [13], adversarial sample attacks [14] [15], 

model extraction attacks [16], and model inversion 

attacks [17] see figure 1. Poisoning attacks and model 

inversion attacks occur during the training stage, where 

malicious data is injected to degrade model performance 

and information about the training set is obtained 

through reverse reasoning. Model extraction attacks and 

adversarial sample attacks take place during the 
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inference phase, involving theft of internal model 

information and deception of the model by introducing 

interference factors to generate adversarial samples. 

Numerous defence measures have been developed to 

counter these threats, including homomorphic 

encryption [18], secure multi-party computation [19], 

and differential privacy [20]. 

 

Figure 1: ML security and privacy approaches 
 

The reliance on machine learning training on the 

quantity and quality of datasets poses a serious risk to 

widespread adoption due to the potential leakage of 

sensitive personal data. Model inversion attacks, 

particularly membership inference attacks, represent a 

critical privacy challenge by successfully inferring 

whether a specific target sample belongs to the target 

training dataset, resulting in privacy breaches. This 

attack has been successfully demonstrated in various 

data domains, such as biomedical data [21] [22] [23] and 

mobile location data [24], illustrating its potential harm 

to individual privacy and emphasizing the need for 

robust defence mechanisms.  

Given that scholars specialize in various research fields 

with distinct problem-solving perspectives, the emphasis 

on member reasoning attack and defence varies among 

them. Thus, this paper initiates its exploration from the 

fundamental theory of attacking and defending machine 

learning models, scrutinizing pivotal technical models 

and elucidating the correlation between member 

inference attack models and the associated risks of 

privacy leakage. This endeavour holds immense 

significance in safeguarding data privacy and propelling 

advancements in the field of machine learning 

applications. The second section of this paper concisely 

outlines the adversary model, definition, classification, 

and generation mechanism of member inference attacks. 

In the subsequent sections, namely Sections 3 and 4, 

diverse types of member inference attack algorithms 

undergo detailed analysis, shedding light on their attack 

methods and current application status. Section 5 

systematically organizes and summarizes the protective 

strategies employed against distinct attack methods, 

delving into the underlying reasons contributing to their 

effectiveness. Ultimately, Sections 6 and 7 encapsulate 

the comprehensive findings of the paper and present a 

forward-looking perspective for future research 

endeavours. 

2. MEMBER INFERENCE ATTACK 

 In this section, we aim to consolidate and distill 

existing research findings on member inference attacks. 

Our focus is to succinctly summarize the key insights 

and methodologies explored in the current body of 

literature. This overview serves to provide a quick and 

informative reference for readers delving into the realm 

of member inference attacks. 

2.1. Adversary Model 

Within the domain of machine learning security, 

adversary models serve to delineate the capabilities and 

objectives of potential adversaries. In 2010, Barreno et 

al. [25] delved into the adversary model, considering 

both attacker capabilities and goals. Building upon this, 

Biggio et al. [26] expanded the adversary model in 2013 

to encompass adversary goals, knowledge, capabilities, 

and strategies. The incorporation of these four 

dimensions offers a more systematic framework for 

characterizing the adversary's threat level when 

evaluating member reasoning  

Table 1 Adversary model in membership inference attack 

 

2.2. Definition and Model 

Membership inference attacks involve the extraction of 

membership details from the training data by 

scrutinizing the target model system, constituting a 

prevalent type of attack leading to privacy breaches. This 

method determines whether specific data contributed to 

training the target model, enabling the attacker to infer 

details about the model's training set. As illustrated in 

Figure 2, the target model, trained on the original dataset, 



Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.1, Issue2, (2023), PP. 24-34 

 

 
Publisher: JISADS.com 

26 
 

operates on the application platform. The attacker, 

posing as a user, accesses the target model, gathering 

relevant information and adversary knowledge to 

construct an attack model capable of deducing whether 

a given dataset constitutes a member of the training set. 

 

Figure 2:  The model of membership inference attack 

 

2.3. Categorization of Attack Models 

Recent investigations into member inference attacks 

have resulted in categorizations based on distinct 

criteria, delineated in Table 2. Studies have classified 

these attacks into specific categories, each representing 

a unique standard or framework. 

 

Table 2  Types of membership inference attacks 

 

As indicated in Table 2, the classification of member 

inference attacks is based on the attacker's familiarity 

with the target model information, denoted as the 

adversary's knowledge. This results in two primary 

categories: black box attacks [27][33] and white box 

attacks [34][35]. In a black box attack, the attacker can 

solely access the model output results through the 

corresponding API, limited to observing the output 

𝑓(𝑥;𝑊) for input x without gaining access to 

intermediate results. Conversely, a white-box attack 

allows the attacker to access comprehensive 

information, including the target model's structure, 

training parameters, internal output results, training data 

distribution, and related data information. 

Additionally, based on the attacker's engagement level, 

member inference attacks are further categorized into 

strong adversaries (active attacks) and weak adversaries 

(passive attacks). A strong adversary actively intervenes 

in the target model's training process, participating in 

federated learning and having the capability to modify 

intermediate data during training. In contrast, a weak 

adversary can only observe data changes during training 

and extract information through passive acquisition of 

the model interface. 

Considering different attack types, member inference 

attacks primarily fall into two categories: centralized 

learning and federated learning. Centralized learning 

involves traditional model training with centralized 

storage of datasets for training the target model. On the 

other hand, federated learning entails local storage and 

training of personal data by each participant, exchanging 

gradients through a central parameter server for joint 

model training. Attackers in this model can either be a 

central parameter server or a local party. 

Originally, member inference attacks predominantly 

targeted machine learning. However, with the 

widespread application of various data types such as 

images, text, and knowledge graphs, these attacks 

expanded to encompass transfer learning, deep learning, 

graph neural networks, and generative models. This 

broader scope has led to increased privacy risks. 

2.4. Generating mechanism of attacks 

The success of membership inference attacks hinges on 

a critical vulnerability known as overfitting within the 

target model. This susceptibility allows the model to 

memorize implicit traits of the training data, 

empowering attackers to discern membership 

relationships within the target data accurately. 

Additionally, factors like the introduction of abnormal 

data, characteristics of data distribution, and 

intermediate processes during model training furnish 

attackers with tools to detect targets and execute 

successful attacks. 

Overfitting, a core component of membership inference 

attacks, involves attackers distinguishing between the 

training set and the test set of the target model. The 

model's proficiency in predicting the training set with 

high accuracy, coupled with diminished predictive 

abilities for the test set, renders models vulnerable to 

such attacks. 

Outliers within the training set further exacerbate 

vulnerability. When these outliers, crucial for data 

representation, deviate in distribution from the test set 
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data, the model's failure to adapt seamlessly results in 

distinguishability between the training set and test set. 

This distinctiveness facilitates the success of 

membership inference attacks. 

Moreover, the impact of data and model factors, 

including shadow data set size, class and feature balance, 

and model configuration, contributes to the complexity 

of member inference attacks. These attacks are not solely 

influenced by one factor but rather orchestrated by the 

collaborative interplay of multiple factors. 

3. ATTACK ALGORITHM 

Membership inference attacks, demonstrated to be 

successful across diverse data domains, can be broadly 

categorized into two types within the realm of machine 

learning—those leveraging black-box knowledge and 

those reliant on white-box knowledge, as elaborated 

below. 

3.1. Black box knowledge 

The majority of studies on membership inference attacks 

have focused on black-box models. Shokri et al. were 

pioneers in proposing a membership inference attack on 

a machine learning model, successfully determining 

whether a specific patient had been discharged from the 

hospital [31]. Subsequently, Salem et al. introduced 

another attack by gradually relaxing Shokri et al.'s 

assumptions, achieving improved precision and recall 

[32]. Confidence-based membership inference attacks 

for machine learning models have also emerged in 

various domains, including federated learning, 

generative adversarial networks, natural language 

processing, transfer learning, and computer vision 

segmentation [33][38][39]. Decision-based attacks in 

the field involved Yeom et al.'s quantitative analysis of 

the relationship between attack performance and the loss 

of the training and test sets, introducing the first 

decision-based attack known as the Baseline attack [33]. 

Choo et al. proposed a method akin to boundary attack 

[38]. 

1. Shadow Technology Attack 

The original membership inference attack against 

machine learning, known as the shadow technology 

attack, was proposed by Shokri. This approach 

necessitates the use of shadow technology to simulate 

the target model, constructing a training dataset to train 

the two-class attack model for membership inference 

[31]. As shown in Figure 3 . 

 

Figure 3:  Black box attack 

 

This methodology involves three primary steps: data 

synthesis, shadow model simulation, and attack model 

construction. 

a) Data Synthesis: In situations where access to the 

model is restricted (black box scenario), the attacker 

lacks information about member data. Therefore, it 

becomes necessary to synthesize approximate data using 

various statistical algorithms such as model-based, 

statistical distribution-based, and noise-based methods. 

b) Shadow Model Simulation: Relevant data synthesized 

in the previous step is employed to train one or more 

shadow models. These shadow models imitate the 

structure of the target model without having any 

knowledge about it. The shadow technology effectively 

simulates the target model through analysis and 

simulation, with the shadow model acting as a substitute 

for the original target model. 

c) Attack Model Construction: Using the data set of the 

shadow model and the confidence vector output of the 

target model, a binary attack model is trained. This 

model, combined with the assigned label (where if data 

point x is lost to the training set of the shadow model, 

then label = 1; otherwise, label = -1), determines whether 

a given target data point belongs to the training data set 

of the target model. 

Salem et al. [32] later relaxed Shokri's assumptions, 

proposing a more accurate and recall-focused approach. 

This method involves using only the output results of the 

target model for threshold discrimination, as shown in 

formula (1). While this approach is straightforward and 

highly efficient, its applicability is limited to models 

with poor generalization 

Black-box attacks leveraging shadow technology 

initially focused on machine learning model API 

interfaces within cloud platforms, later expanding to 

https://www.hanspub.org/journal/PaperInformation?paperID=48379#f3
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include deep learning, transfer learning, and graph 

neural networks. In the context of shadowing attacks on 

graph neural networks trained on data like social 

networks and protein structures [34], synthetic data and 

shadow models may exhibit inconsistencies with the 

target system, yielding favourable outcomes even for 

models boasting strong generalization performance. 

This vulnerability in graph neural networks arises from 

heightened connectivity between instances. 

2. Baseline Attack 

Yeom et al. [33] introduced the baseline attack in 2018, 

performing membership inference based on the correct 

classification of data samples. If the target data is 

misclassified, it is deemed non-member data; otherwise, 

it is considered member data. The intensity of the 

baseline attack correlates positively with model 

overfitting. For models with substantial generalization 

gaps, the attack performance is high with low cost, but it 

proves ineffective for models exhibiting good 

generalization. 

3. Tag Attack 

Choo et al. [38] proposed a method resembling the 

boundary attack, conducted in a black-box setting solely 

with the target model's output label. This attack operates 

on the principle that training set samples are more 

resistant to perturbation than test set samples. The tag-

based membership inference attack involves three 

stages: 

a) Adversarial Sample Generation: Leveraging the target 

model's prediction label as input, adversarial sample 

technologies like FGSM, C&W, and hopskipjump 

induce decision changes on the target, generating 

adversarial samples. 

b) Perturbation Mapping: Calculating the Euclidean 

distance between the adversarial sample and the original 

target, mapping the perturbation difficulty to distance 

categories to discern prediction differences between the 

target model's training and test data. 

c) Member Inference: Logically distinguishing 

prediction differences to obtain fine-grained member 

signals for membership inference of the target group. 

4. Diversion Attack 

In [39], a diversion attack is proposed involving given 

data points (x, y) and the confidence vector obtained 

from the target model f(x). The cross-entropy loss loss(x, 

y) = − log(f(x)y) is calculated. 

3.2. White Box Knowledge 

In the realm of black-box knowledge attacks, the 

assailant is limited to targeting the training data solely 

based on the model's output. Nonetheless, the 

intermediate calculation data of the training process 

harbours substantial information about the training data. 

In pioneering work on attacking Generative Adversarial 

Networks (GANs), a white-box attack was first 

proposed, exclusively leveraging the output of the 

GAN's discriminator without learning the weights of the 

discriminator or generator to execute the attack. 

Furthermore, Nasr et al. extended the member inference 

attack to a white-box setting based on prior knowledge 

[35]. The activation function and gradient information 

obtained from the target model serve as inferred features 

for conducting member inference. The specific details 

are illustrated in Figure 4. 

 

Figure 4:  White box attack 
 

Drawing from Figure 4, this solution operates on the 

principle that the target model undergoes fine-tuning and 

updates based on the training set data to minimize the 

loss gradient of the training data, thereby distinguishing 

between the gradient of the training set data and non-

training set data for member inference. 

For a target model f and input data x, the attacker 

computes the output of each layer in the forward 

propagation calculation of the target model, denoted as 

hi(x), the model output f(x), and the loss L(f(x; W), y). 

Subsequently, the gradient of each layer is calculated 

through backpropagation ∂L/∂Wi. These obtained 

parameters, along with the one-hot vector of y, constitute 

the input feature parameters of the attack model. 

These input features are then fed into the corresponding 

Convolutional Neural Network (CNN) or Fully 

Connected Network (FCN) for feature extraction. The 

output is packaged and passed to the Fully Connected 
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Network (FCN), ultimately yielding the result of the 

inference attack. The attack model comprises two 

integral components: the Convolutional Neural Network 

(CNN) and the Fully Connected Network (FCN). 

Additionally, Long et al. [37] introduced a member 

inference attack, GMIA, targeting well-generated 

models. In this attack, not all data is susceptible to 

member attacks. The attacker must identify vulnerable 

abnormal data points to differentiate members from non-

members and execute a successful attack. 

3.3. Algorithm comparison 

In this section, we conduct a thorough comparison of the 

algorithms discussed earlier, providing an in-depth 

summary of existing member inference attack 

algorithms. The specific details of this comparative 

analysis are presented in Table 3. 

Table 3 Comparison of membership inference attack algorithms 

 

 

4. CURRENT STATUS OF MEMBERSHIP 

INFERENCE ATTACKS 

Given the ability of membership inference attacks to 

deduce the presence of specific data in a model's training 

set, their applications extend to verifying whether a 

user's data has been used without proper authorization. 

This capability has implications for disease monitoring, 

safety oversight, risk assessment, and privacy 

reinforcement in machine learning systems before 

potential attacks occur. 

4.1. Auditing and Verification 

Miao et al. [44] devised a voice audit model to identify 

if a user's voice data is part of the target model's training 

set, thereby indicating potential unauthorized use of user 

data. This user-centric member reasoning approach 

assesses whether a user's data was involuntarily utilized 

by the target model during training, promoting user 

rights protection and enabling audits of the target system 

model. Similarly, Song et al. [45] introduced an audit 

model for text generation models, deploying member 

inference to ascertain whether user data has been 

employed without proper authorization. 

4.2. Disease Prediction 

Membership inference attacks find application in disease 

monitoring using medical data [21] [22] [23] [36]. For 

instance, Homer et al. [21] aggregated profiles and case 

studies of target individuals with reference populations 

from public sources to determine if the target individual 

belongs to a group related to a particular disease. 

Moreover, in a diagnostic model developed from AIDS 

patient data, inferring that a person's medical data was 

used as the model's training data suggests a potential 

association with AIDS. 

4.3. Safety Oversight and Intellectual Property 

Rights 

Membership inference attacks prove useful in user credit 

monitoring [47] (e.g., one takeout platform serving 

multiple users), aggregate location monitoring [24], pre-

release evaluation of privacy protection quality in 

systems (platforms), and regulatory authorities' 

monitoring for potential illegal use of user information, 

facilitating user rights protection. Additionally, these 

attacks pose a threat to the intellectual property rights of 

model providers over their training datasets. 

5. DEFENCE STRATEGIES 

In response to the diverse range of membership 

inference attacks, researchers have dedicated 

considerable attention to developing targeted defence 

solutions, leading to focused research efforts. 

5.1. Defense Technologies 

Member inference attacks pose a threat to the privacy of 

training set data. Defence strategies against membership 

inference fall into three main categories: 

Regularization-Based Defenses [48] [49] [50]: These 

defences employ regularization techniques directly, 

including L2 regularization, dropout, model stacking, 

and min-max strategies. 

Defence Based on Adversarial Attacks: This approach 

aims to protect the victim model through adversarial 

attacks. 

Defence Based on Differential Privacy [51]: Differential 

privacy involves adding disturbance noise to various 

elements such as training data input, objective function, 
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model gradient, and output processes to mitigate 

member privacy leakage. 

The following outlines some of the latest defence 

technologies along with their advantages and 

disadvantages. 

5.1.1. Min-Max Game 

Nasr introduced a gaming concept to train models with 

membership privacy [48]. This approach ensures that the 

model remains indistinguishable between its training 

data and predictions for other data points. The privacy 

mechanism targets robust inference attacks, minimizing 

both privacy loss and classification loss. The 

optimization of the minimum-maximum objective 

function in this algorithm not only safeguards member 

privacy but also significantly mitigates the risk of 

overfitting. 

5.1.2. mem-guard 

mem-guard represents the inaugural defense mechanism 

that provides formal assurances regarding utility loss 

against membership inference [49]. Its core concept 

involves introducing carefully crafted noise to the 

confidence scores of the machine learning model, 

thereby misleading member classifiers. Essentially, the 

addition of a noise vector, denoted as "n," to the 

confidence score vector, "s," ensures a defense against 

membership inference attacks with guaranteed utility 

loss [41]. The algorithm seeks to identify the noise 

vector satisfying a unique utility-loss constraint. 

Functioning as a defense against black box attacks, this 

algorithm probabilistically introduces noise to the 

confidence score vector obtained from the target model, 

forming a random noise addition mechanism. This 

allows the defender to simulate the attacker's attack 

classifier, creating a defense classifier, followed by the 

formulation of an optimization problem for resolution. 

Empirical evidence supports the assertion that mem-

guard exhibits greater strength compared to min-max 

game and model stacking. 

5.1.3. Differential Privacy 

Chen's proposed differential privacy defense technology 

[51] safeguards model privacy by perturbing the model's 

weights. The mechanism entails a trade-off between 

privacy and model accuracy, where smaller privacy 

budgets offer more robust privacy guarantees at the 

expense of reduced model accuracy. Chen's experiments 

depict the relationship between the privacy budget and 

the accuracy of the target model as a logarithmic curve, 

identifying a balanced budget near the inflection point. 

Combining differential privacy with model sparsity 

substantially diminishes the vulnerability to membership 

inference attacks. 

5.1.4. Other Defense Technologies 

The MMD + Mix-up algorithm, introduced by Li [52], 

enhances the model's loss function by incorporating the 

maximum average difference between the softmax 

output empirical distributions of the training set and 

validation set as a regularizer. This regularization 

technique aims to minimize the distribution disparity 

between member and non-member samples, thereby 

fortifying the model against potential attacks. 

6. CHALLENGESAND SUGGESTIONS 

As artificial intelligence research and applications in 

machine learning continue to advance, the unique nature 

of machine learning algorithms presents substantial 

challenges for safeguarding user data and network 

models. Addressing these challenges requires a 

comprehensive consideration of heightened security and 

privacy threats, accompanied by the development of 

adaptable defence methods that enhance the efficacy of 

machine learning models. This section examines the 

research challenges associated with member inference 

attacks and defences, offering insights into future 

research directions. 

Explore Efficient White-Box Knowledge-Based 

Machine Learning Member Inference Attacks 

While current membership inference attacks based on 

black-box knowledge yield satisfactory performance 

across diverse datasets, their efficiency lags behind 

white-box attacks, imposing certain limitations. For 

instance, the efficacy of black-box shadow technology 

attacks is influenced by model generalization and 

constrained by assumptions regarding data distribution 

and model structure. Therefore, investigating efficient 

member inference attacks based on white-box 

knowledge becomes a pressing concern. 

Develop a Generalized Membership Inference Attack 

Mechanism for Various Machine Learning 

Algorithms 

Efforts are needed to design a membership inference 

attack mechanism that is universally applicable to 

different machine learning algorithms. Black-box 

attacks, primarily driven by overfitting, exhibit low 
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efficiency and stability. Simultaneously, white-box 

attacks face coverage limitations in practical scenarios, 

particularly within federated learning contexts. A 

comprehensive approach that encompasses various 

machine learning algorithms and incorporates effective 

attribute inference is essential. 

Devise Feasible Attack Plans for Non-Euclidean 

Spatial Data 

Existing membership inference attacks predominantly 

focus on machine learning models trained on Euclidean 

space data, such as images and text. However, real-world 

data often manifests as graphs, as seen in social networks 

and protein structures. Current research has shown the 

viability of graph neural networks for processing such 

data, but privacy attacks on machine learning models in 

this realm remain underexplored. Exploring privacy 

preservation for non-Euclidean spaces without 

compromising the user experience in online social 

networks represents a promising avenue for research. 

Strike a Balance Between Privacy, Efficiency, and 

Usability 

Balancing the privacy of training data, model efficiency, 

and usability poses a significant challenge in machine 

learning. Privacy-preserving methods, such as 

differential privacy, may enhance privacy and efficiency 

but struggle to achieve an optimal utility-privacy balance 

due to added noise perturbation. Alternatively, secure 

multi-party computation offers high privacy and 

usability but introduces inefficiencies through noise 

perturbation and increased communication overhead. 

Establishing a multi-dimensional evaluation system and 

optimizing trade-offs among privacy, efficiency, and 

usability in diverse scenarios is crucial. 

Establish a Unified Privacy Leakage Measurement 

Standard 

In the realm of machine learning member inference 

attacks, measuring the privacy leakage risk of models is 

a critical aspect of evaluating attack performance. While 

some scholars have delved into privacy quantification, 

the research remains fragmented and narrowly focused 

on specific fields. A unified model and system for 

privacy leakage measurement and comprehensive risk 

analysis are yet to be established. Consequently, there is 

a need to develop a standardized privacy disclosure 

measurement and evaluation mechanism in machine 

learning. 

 

 

Optimize Traditional Data Privacy Protection 

Solutions 

Privacy protection solutions grounded in regularization, 

differential privacy, and adversarial games effectively 

mitigate privacy leakage in member inference attacks. 

However, given the sensitivity of private data and the 

model's robust memory capacity, there is room for 

optimization by combining traditional privacy defences 

with hybrid methods like cryptography, anonymity, 

adversarial regularization, and differential privacy. 

These optimizations can enhance overall data privacy 

protection. 

7. CONCULOSION  

This article initiates by presenting the current landscape 

of security and privacy threats confronting machine 

learning, delving into the intricacies of member 

inference attacks as part of the broader spectrum of data 

privacy threats. Subsequently, we conduct a 

comprehensive comparative analysis of prevalent 

member inference attack methods, exploring their 

application status. Following this, we scrutinize 

common privacy protection methodologies against 

member inference attacks and delve into the underlying 

mechanisms that render defense strategies successful. 

Ultimately, through an in-depth comparison and analysis 

of the limitations inherent in existing data privacy 

protection approaches, we address the challenges 

inherent in privacy protection research pertaining to 

member inference attacks, anticipating and preparing for 

more sophisticated attacks in the future. 
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