
Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 61

Publisher: JISADS.com

EMBEDDED SYSTEMS REQUIREMENTS: A SYSTEMATIC REVIEW

OF DESCRIPTION LANGUAGES AND INTELLIGENT SOFTWARE

SYNTHESIS

Maisam Khalil1, Dr.Eng.Ahmad Kurdi2 *
1 Computer Engineering Department, Al-Wataniyah Private University, Syria.

2* Applied Faculty - Computer Technology Department, University of Hama, Syria

maysamkhalil994@gmail.com, Dr.eng.ahmad_kurdi@hama-univ.edu.sy

ABSTRACT

With the widespread application of embedded systems, their requirements are becoming increasingly complex,

and requirements analysis has become a key stage in the development of embedded systems. How to accurately

model and describe requirements has become the primary issue. This paper systematically investigates the

requirements description of embedded systems and conducts a comprehensive comparative analysis in order to

gain a deeper understanding of the core concerns of embedded system requirements. First, a systematic literature

review method is adopted to identify, screen, summarize, and analyze the relevant literature published between

January 1979 and November 2023. Through automatic retrieval and snowballing, 150 papers closely related to

the topic were selected to ensure the comprehensiveness of the literature review. Secondly, from the aspects of

requirements description focus, requirements description dimension, and requirements analysis elements, the

expressive ability of existing embedded requirements description languages is analyzed. Finally, the challenges

faced by the current software requirements description of embedded systems are summarized, and the

requirements for the expressive ability of the requirements description method for embedded systems are put

forward for the task of intelligent synthesis of embedded software.

Keywords: embedded system, requirements description language, requirements analysis, Classification.

1. INTRODUCTION

 Embedded systems have penetrated all aspects

of human life and are widely used in various fields such

as automotive electronics, aerospace, rail transit, medical

equipment, and personal mobile devices [1]. The

accompanying increase in demand complexity is a result

of this. Each embedded system integrates a large number

of functional requirements and non-functional

requirements such as real-time, safety, and reliability.

For example, a high-end car has more than 2,000

software-based functions [2]; and an aviation embedded

system has as many as 139 functions [3]. In addition, the

complexity of embedded system requirements is also

reflected in the sharp increase in the number of

connected devices. According to Mumtaz et al. in the

literature [4], the number of wireless access devices in

the fields of future transportation, smart cities, and

factories will reach the level of tens of billions.

For the development of complex software systems, the

requirements stage is the most error-prone and costly

stage, especially for embedded software systems [5, 6].

Broy et al. found that more than 50% of the errors in the

embedded field occurred at the time of system delivery

and were related to the wrong understanding of the

requirements [7]. Naumchev et al. pointed out that the

requirements problems that lead to software disasters can

be divided into two categories: one is the wrong

understanding, updating, and implementation of the

requirements, and the other is that the requirements are

incomplete, inconsistent, and do not meet the user’s

needs [8]. Accurately describing the requirements has

mailto:maysamkhalil994@gmail.com

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 62

Publisher: JISADS.com

become a key task in the development of embedded

systems [9, 10].

Compared with traditional information system software,

embedded system requirements have their particularity.

First, the embedded system is composed of software and

hardware. Its software interacts directly with the physical

world through various sensing devices and acting

devices, and runs on a hardware platform with limited

resources according to the system control logic.

Therefore, its requirements not only include software

and hardware behavior, but also cover constraints on

performance, accuracy, reliability, etc., some of which

are mandatory requirements. This requires us to

accurately capture and express these constraints in the

requirements description. Secondly, the development of

embedded systems begins with the task intention. The

requirements analysis gradually refines the task intention

from system-level requirements to software and

hardware-related requirements. The requirements

analysis needs to clearly decouple the intertwined

requirements into relatively simple operations. The

relationship between different levels of requirements has

become an important part of requirements analysis. How

to express the requirements of various levels has become

the primary issue.

Since the 1970s, researchers have begun to pay attention

to the problem of embedded system requirements

description and have proposed a series of requirements

description languages, designing their language

expression capabilities from different perspectives. In

the 1980s, Davis et al. [6] and Melhart et al. [7]

respectively reviewed the mainstream embedded

requirements description languages at that time and

explained the background, characteristics, and

applications of these languages. However, their writing

age is relatively long, the languages covered are few, and

the computer and embedded technology at that time were

far from mature and developed as they are today, and the

connected devices were also few.

With the increasing complexity of embedded systems,

their requirements are not only intricate, but also

scattered in different stages of software and hardware

development. Therefore, many new embedded system

requirements description methods have appeared.

Through a comprehensive investigation, comparison,

and analysis of these existing works, this paper hopes to

deeply understand the core concerns of embedded

system requirements, as well as the capabilities of

existing embedded requirements description languages,

clarify the intertwining of embedded system

requirements caused by device sharing, refine the key

components of requirements description, and lay a

foundation for proposing a requirements description and

requirements analysis that has a certain degree of

universality and can capture decentralized requirements.

This paper adopts the systematic literature review

method to search and screen the relevant literature

published from January 1979 to November 2023 and

finally selected 150 papers from 3,442 documents as the

research object. Due to the differences in research

objects and terminology in various documents, and

considering that the requirements involved in embedded

systems are closely related to their system structure, in

order to uniformly express the meaning of various types

and levels of requirements and facilitate comparative

analysis, before starting the investigation, we first gave

a reference structure of a general embedded system as

the basis for the investigation and analysis.

Next, from the aspects of requirements modeling focus,

requirements description dimension, and requirements

analysis elements, the expressive ability of existing

embedded requirements description languages is

analyzed. Finally, the challenges faced by the current

software requirements description of embedded systems

are discussed, and for the research hotspot the intelligent

synthesis task of embedded systems the requirements for

the expressive ability of its embedded system

requirements description language are proposed

2. EMBEDDED SYSTEM REFERENCE

STRUCTURE

 In order to review the requirements description

of embedded systems from a unified perspective, we

give the reference structure of the embedded system, as

shown in Figure 1. Among them, the embedded system

is regarded as a computing software and hardware

complex with specific functions. The software serves as

a controller that coordinates system equipment to

complete the design intent of the embedded system. The

hardware equipment mainly includes various sensors,

actuators, and other equipment that the system can

manage and schedule. The controller communicates with

the external environment through the system equipment.

These external environments include super

administrators, external software systems, natural

environments, physical environments, etc.

Complex embedded systems usually have multiple

software controllers. We distinguish between a system

controller and a set of subsystem controllers. Among

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 63

Publisher: JISADS.com

Figure1. Embedded system architecture

them, the system controller can receive external control

instructions from the super administrator, monitor the

status of each subsystem controller, and control and

coordinate the subsystem controllers. The subsystem

controller is responsible for coordinating the

corresponding sensors and controllers, obtaining

external environment information, and implementing

control operations. The sensor can obtain the attributes

of the external environment. In addition to being

regarded as an external device, it is also regarded as a

system interface. The actuator can apply the software

controller instructions to the external environment.

For the expectations and requirements of different

components in the above embedded system reference

structure, different types of requirements descriptions

will be obtained. These types include system task intent,

system capability requirements, software capability

requirements, hardware requirements, and software

design constraints.

Among them, the system task intent expresses the goal

of the system. Since the embedded system will act on the

external environment, following the requirements

engineering concept based on environmental modeling

[8], the system task intent is usually reflected in the

response to the expected changes in the external

environment. For example, in the aerospace field, the

task intent of the sun search control system is to perceive

the position of the sun in the natural environment and the

current satellite’s body angle in the physical

environment and adjust its own body angle to achieve

sun-tracking cruise. In this example, both the sun and the

star constitute the external environment.

System capability requirements describe the capabilities

that the system must have. These capabilities are the

specific conditions or requirements that must be met to

achieve the system’s task intent. Specifically, since the

embedded system will interact with the external

environment through the system equipment, its

capabilities are based on the input and output

relationship between the embedded system and the

external environment, that is, the input and output of the

system equipment and the external environment. For

example, in the sun search control system, the system

measures the satellite’s speed and angle through sensors

such as gyroscopes and sun sensors and perceives sun

visibility information.

Software capability requirements refer to the capabilities

that the software needs to have to schedule, manage, and

control system equipment in order to meet the system

capability requirements. It is often expressed in the input,

output, and their relationship between the embedded

software controller and the system equipment, also

known as embedded software requirements, including

various functional and non-functional requirements. For

example, the sun search control software needs to send

power control instructions and data communication

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 64

Publisher: JISADS.com

instructions to devices such as gyroscopes and sun

sensors and receive and process measurement data.

These are all functional requirements; the period interval

for the sun search control software to write control

commands to the thruster must be less than 120 ms, etc.,

which belongs to non-functional requirements.

Hardware requirements are constraints on embedded

hardware devices, which can be divided into system

equipment requirements and software operating platform

requirements. System equipment requirements mainly

involve various sensors and actuators, such as the sensor

gyroscope can measure the angular velocity of the

satellite, each data acquisition of the sensor must be

completed within 90 ms, the restart time of the actuator

cannot exceed 500 ms, etc.; the software operating

platform requirements refer to the requirements for the

hardware platform that supports the operation of the

embedded system software, such as the memory capacity

is not less than 128 MB, the storage space is not less than

1 GB, and the processor must process 5 million

instructions per second.

The above five different types of requirements

descriptions are actually the products of different

requirements development stages. The usual

requirements development process is as follows: first,

through system goal analysis, study the expected

changes in the external environment, and obtain the

system’s task intent. Then, through system capability

analysis, the task intent is specified as the input and

output relationship between the system and the external

environment, and the system capability requirements are

derived. Next, software and hardware partitioning is

performed. Through the analysis of the interaction

between the software and external devices and the

requirements for external devices and platforms, the

software capability requirements and hardware

capability requirements are obtained. Finally, the

software design constraints can be obtained for the

preliminary design stage of the software. The software

requirements specification of the embedded system is a

process of continuous deduction from the expectation of

the external environment to the behavior of the software

controller, which involves the refinement,

decomposition, deduction, and evolution of different

types of requirements.

3. LITERATURE REVIEW METHOD

3.1 Research Questions

 The purpose of this paper is to deeply

understand the core concerns of embedded system

requirements and the capabilities of requirements

description languages. For this purpose, two research

questions were designed:

- RQ1: What are the types of requirements involved in

the common description of embedded systems?

- RQ2: What are the capabilities of existing embedded

system requirements description languages?

3.2 Literature Collection

 This section describes the data collection

process in the systematic literature review, including

literature retrieval, literature screening, and snowballing.

The three authors of this paper finally selected 150

papers from 3,442 documents as the research collection

after automatic and manual retrieval and snowballing.

(1) Literature Retrieval

We first considered keywords related to requirements

engineering, embedded systems, embedded software,

and requirements description. In the search, we found

that process control systems and real-time systems are

also many embedded systems, so we added related

keywords. The final Chinese keywords for literature

retrieval were “(embedded system software + embedded

system + embedded software + process control system +

real-time control system) * (requirements description +

requirements specification + requirements specification

+ requirements modeling + system description + system

specification + system specification + system modeling

+ requirements standard + requirements format +

requirements document)”, and the English keywords

were “(“embedded system software” OR “embedded

system” OR “embedded software” OR “process control

system” OR “real time control system”) AND

(“requirements description” OR “requirements

specification” OR “requirements modeling” OR “system

description” OR “system specification” OR “system

modeling” OR “requirements standard” OR

“requirements format” OR “requirements

documentation”)”.

The literature databases used for retrieval include Web

of Science, IEEE Xplore, ACM Digital Library, Science

Direct, Springer, Engineering Village, and CNKI. A total

of 3,442 documents were obtained by searching in the

above literature databases. Among them, Springer had

the most documents, with 2,443, and CNKI had the

fewest, with 13. The specific search results are shown in

Figure 2. Due to the large data gap, we used a non-

proportional vertical coordinate for display.

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 65

Publisher: JISADS.com

Figure 2. Database Search Results by Publisher

(2) Literature Screening

We screened the retrieved literature. The inclusion and

exclusion criteria for the literature are as follows. Note

that literature that meets any of the inclusion criteria is

included, and literature that meets any of the exclusion

criteria is excluded. The literature inclusion criteria (IC)

are as follows:

- IC1: The literature involves the requirements

description related to embedded systems. At this stage,

our goal is to maximize the scope of the literature to

ensure the integrity of the research.

- IC2: The literature successfully applies the general

requirements description and specification language,

method, and process to real cases of embedded systems.

The literature exclusion criteria (EC) are as follows:

- EC1: Literature for which the full text of the electronic

version cannot be obtained.

- EC2: Literature written in languages other than English

and Chinese.

- EC3: Literature that has not been peer-reviewed.

- EC4: There is more complete literature, that is, there

are multiple documents for the same research, and only

the most complete literature is included.

The specific screening process is as follows. First, the

title, keywords, and abstract of the literature are screened

to determine which literature meets the

inclusion/exclusion criteria, and then the full text is read

for screening. When assigning tasks, we ensure that each

selection stage of each document is completed by at least

two authors. Controversial documents must first be

evaluated by three authors, and then a consensus is

reached through discussion. After screening according to

the above criteria, 106 documents were obtained. Then,

the snowball method was used to screen and summarize

the references of these documents, and finally 150

documents were selected.

4. TYPES OF EMBEDDED SYSTEM

REQUIREMENTS DESCRIPTION

Table 1 summarizes the types of embedded system

requirements involved in the searched literature,

including system task intent, system capability

requirements layer, software capability requirements,

hardware requirements, and software design constraints,

which involve various different levels. Among them, the

description level of system task intent and system

capability requirements is relatively high, but there is

less existing work. Most of the work focuses on the

description of software capability requirements, which is

an indispensable basic component of embedded software

requirements specification. Both functional and non-

functional requirements are important in software

capability requirements. There are few research works

describing hardware requirements, and there are also

many research works involving software design

constraints.

Table 1: Requirement Types in Embedded Systems

Requirement Type References

System Task Intent [10-13]

System Capability [10,11,14-20]

Software Capability [2,5,10-12,14-18,21-97]

Non-Functional
[2,5,10,11,14-18,20-30,32,34-
41,43,56,63,64,66-70,72-78,82-84,87,95,98-
122]

Hardware [13,14,16,19,20]

Software Platform
Constraints [18,22,84]

Software Design
Constraints

[11,16,21,23,24,33,40,53,60,83,84,97,123-
138]

It should be noted that there is a close relationship

between these different types of requirements. From the

perspective of implementation, system capability

requirements must meet system task intent, and software

capability requirements and hardware requirements must

meet system capability requirements. Because of this

relationship, many works involve multiple levels of

requirements description. For example, the SCR

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 66

Publisher: JISADS.com

(software cost reduction) method [14–16] and the

ECSAM (embedded computer system analysis and

modeling) method [11] both include descriptions of two

levels: system capability requirements and software

capability requirements; SDL (specification description

language) [22], SOFL (structured-object-based-formal

language) [23, 126, 127], and Hume [40] all contain

descriptions of software capability requirements and

software design constraints; the research of Pereira et al.

involves system capability requirements, software

capability requirements, and hardware requirements

[19]. However, no research has yet involved the

refinement process from system task intent to low-level

requirements.

Next, we will explain the existing expression forms of

these requirement types separately.

4.1 System Task Intent and System Capability

Requirements

System task intent describes the high-level goals that the

system task is to achieve. For example, Leveson et al.

described the task intent of an aircraft collision

avoidance system as “eliminating the danger of aircraft

being too close to each other” or “minimizing the

number of situations in which aircraft are too close to

each other” [10]. The aircraft here is the external

environment. Pereira et al. defined intent as a set of

system goals defined by stakeholders [19], such as

“serving more passengers.” Similarly, Ponsard et al. [12]

and Braun et al. [13] also use goal models to express

intent.

System capability requirements are descriptions of the

system’s functions [20]. Since embedded systems

include software and hardware, and the software needs

to perceive information from the external environment

through devices such as sensors and exert control over

the external environment through devices such as

actuators, the system capability requirements are often

expressed as the interaction between the system

equipment and the external environment or the

relationship between the input and output from the

external environment. For example, in the SCR method,

the system capability requirements are expressed as the

relationship between the monitored variables and the

controlled variables of the external environment. Among

them, the monitored variable is the input perceived by

the system through the sensor, and the controlled

variable is the output controlled by the system through

the actuator. This relationship can be described by a

mathematical formula. Leveson et al. defined the

controllable part of the external environment as a

process, and expressed the system requirements as the

relationship or function between the input of the external

environment and the output of the system [10]. Wang Fei

et al. have a similar description [18]. Zave et al. [32] and

Lavi et al. [11] expressed the system requirements as the

interaction between the equipment and the external

interactive environment. Lavi et al. expressed the system

requirements as a task sequence of the system [11], for

example, “when there is an intruder in the protected area,

the alarm sounds.”

4.2 Software Capability Requirements

Software capability requirements include the functional

and non-functional requirements of the software.

Generally speaking, software functional requirements

describe the relationship between the input and output of

the software. Embedded software interacts with the

external environment through sensors and actuators, and

its input and output are obtained through sensors and

actuators. Many studies have focused on the relationship

between input events and output events. For example,

some studies use state machines to express the

relationship between input and output events [10, 11, 22,

25–27, 29, 30]. In EBS (event-based specification

language) [33], this relationship is expressed through an

event relationship description language [33], while in

RSL (requirements statement language) [21], the

relationship between input and output events is

expressed through a stimulus-response path [21]. Other

studies focus on the relationship between input data and

output data. For example, the research of PAISLey

(process-oriented applicative and interpretable

specification language) [32], ESML (extended system

modeling language) [31], SOFL, etc., all involve the

conversion of input and output data. In ASLAN [36], the

properties and constraints that the input and output

variables must satisfy, and in SCR and SPARDL

(spacecraft requirement description language) [41], the

calculation relationship or functional relationship

between the input and output variables are discussed.

There are many non-functional requirements for

embedded software, mainly including time-related

requirements, reliability, robustness, personal safety, and

information security. Time-related requirements are the

most common [10, 14, 21, 22, 25, 26, 32, 34, 37, 38, 40,

111,137]. They have many names, such as time

requirements, real-time requirements, time constraints,

performance, etc. According to the strictness of the time

requirements, time-related requirements can be divided

into three categories.

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 67

Publisher: JISADS.com

The first category is the requirement for time series

[128]. The second category is the quantitative

requirement for time periods and moments [32], which

can be expressed by maximum response time (response

time cannot exceed a certain value), minimum response

time (response time cannot be less than a certain value),

average response time, fixed value, etc. The third

category is the requirement for real-time performance.

For example, some constraints in RTRSM* (real-time

requirements specification model*) [29], RT-FRORL

(real-time frame and rule oriented requirements

language) [35], RTASLAN [37], etc. can be violated,

which belongs to soft real-time. Some are hard

requirements that must be implemented, which belongs

to hard real-time.

Personal safety requirements and information security

requirements are also very important. Personal safety

requirements refer to measures to prevent the system

from harming personal safety or property safety [76, 98,

104, 106, 108, 109, 112, 114, 116, 117]. They are

generally expressed by what the system is not allowed to

do [129], describing system-specific statements about

the existence of safety elements, and are combined with

the minimum or maximum required thresholds of some

quality measurement standards [130]. Some works also

specify the degree of safety that the system must be in.

For example, Medikonda et al. further divided personal

safety requirements into three types: important safety

requirements, pure safety requirements, and safety

constraints [131]. Information security requirements [20,

118, 119, 122, 133,136,125] consider the attacks that the

software system may face, such as leaking personal data

or allowing attackers to gain unauthorized control of the

vehicle, and introduce countermeasures that should be

taken to deal with various threats of destroying or

stealing system information and data.

In addition, other common non-functional requirements

include reliability and robustness. Reliability refers to

the ability or probability of the system to complete a

specific function. For example, PAISLey uses

probability to measure reliability. It divides the value

range of a function into two parts: success and failure,

and uses a random variable, related distribution

information, or a fixed value to represent the probability

of the two. Robustness usually refers to the ability of the

system to operate normally in the face of illegal or

incorrect input and unexpected environmental changes.

Embedded systems usually need to provide response

strategies for abnormal events (such as resource failure,

incorrect input, etc.) [10, 14, 40, 78] to ensure the stable

operation of the system.

4.3 Hardware Requirements and Software Design

Constraints

Hardware refers to the physical equipment used to

process, store, and transmit computer programs or data

[19]. Hardware includes external devices such as sensors

and actuators, and also includes the operating platform

of the software. Since peripherals and software operating

platforms have different requirements, hardware

requirements are divided into requirements for

peripherals and constraints on software operating

platforms.

Peripheral requirements should provide requirements for

the characteristics of peripherals [14, 16], and often

include the functions of peripherals, user interaction,

hardware characteristics (temperature range, humidity

range, battery), action buttons, accuracy, memory

specifications, response time, etc. [20]. Constraints on

the software operating platform are the requirements for

the operating platform such as the processor, memory,

and data storage space during functional design. They

are all limited resources in embedded systems, so they

must be described. Many works have clearly expressed

them. For example, Hume proposed a space overhead

model to predict the upper limit of the stack and space

usage of the program; MARTE (modeling and analysis

of real-time and embedded systems) [132] contains

many resource-related template attributes to express

resource constraints.

Software design constraints generally include interface

requirements for hardware devices, software structure,

programming language, development standard

requirements, confidentiality requirements,

maintainability, usability, etc. [84]. Interface

requirements elaborate on the requirements of each

function at the interface level, which is often used to

describe the input and output of hardware interfaces.

Generally speaking, interface requirements will also

include attributes such as accuracy, range, and time

requirements. Here, accuracy refers to the accuracy of

the system’s output data, that is, it describes the

acceptable error between the output data value and the

ideal value [14]. In existing research work, the design of

the internal structure of software has been studied in

depth. For example, SDL uses structured concepts such

as blocks and processes to describe the designed internal

structure of the system. The SYSREM method [21]

assigns the sub-functions after functional decomposition

to each system component, and at the same time

completes the design of the component interfaces. In

addition, the SYSREM method also proposes a

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 68

Publisher: JISADS.com

distributed computing design system (DCDS) and details

the design process of the modules.

5. EXISTING EMBEDDED SYSTEM

REQUIREMENTS DESCRIPTION LANGUAGES

After in-depth investigation, we have summarized 20

representative requirements description languages, as

shown in Table 2. These languages only cover three

types of requirements description: system capability

requirements, software capability requirements, and

software design constraints. Among them, system

capability requirements are the highest level of

description. Most of the work focuses on the description

of software capability requirements. In contrast, there are

relatively few descriptions involving software design

constraints.

There is only SCR for system capability requirements,

and only SDL for software design constraints. It is worth

noting that both languages are involved at the software

capability level. However, at different requirement

levels, their focus is different. At the system capability

requirement level, SCR mainly focuses on the

measurable environmental attributes that affect the

behavior of the system itself and the environmental

attributes that the system can control. Among them, the

measurable environmental attributes are called

monitored variables, and the environmental attributes

controlled by the system are controlled variables. The

system capability requirements are expressed as the

relationship between these environmental attributes or

variables, and the system must ensure the realizability of

these relationships. At the same time, SCR also describes

the accuracy in measuring monitored variables and

calculating controlled variables. In order to achieve

acceptable system behavior, the input and output devices

must measure the monitored attributes and set the

controlled attributes with sufficiently high accuracy and

sufficiently small time delay.

In the description of software design constraints, the

SDL description language focuses on the organization

and design of the internal structure or modules of the

system. For example, SDL uses the concept of blocks to

describe the system structure. Blocks are hierarchical

and can be continuously decomposed or nested, and also

contain various sub-structural concepts to describe

complex structures.

Next, this section will elaborate on the most expressive

software capability description languages from four

dimensions: description focus, description dimension,

Table 2: Requirement Description Languages for Embedded Systems

Type
Description

Language
Description Focus Description Dimension

Requirement

Analysis

Elements

Non-Functional

Aspects

System

Capability

SCR [14,16]

Environmental attributes

affecting system behavior

and control

Relationship between

monitored/controlled

variables

— Accuracy, Timing

Statecharts [20],

Modechart [27],

RTRSM [28],

Stateflow [29]

Input/output sequences,

conditions, actions, timing

constraints

Superstates, AND/XOR

decomposition
Timing —

SDL [22]
External events/signals

requiring system response

Mapping inputs/current

state to outputs/updated

state

Hierarchical

representation
Timing

RTRL [23]
Correspondence between

input/output events

System decomposition into

independent modules
Timing —

EBS [33]

Events/messages at

interfaces and their

relationships

— Timing —

SCR [14-16]

Real-world attributes

monitored by inputs and

controlled by outputs

Output-input relationships

across modes

Mode-based

state

organization

Timing, Performance,

Exception handling

PAISLey [32]

Physical objects, humans,

and digital systems

controlled by the system

State transitions between

asynchronous processes
Hierarchical Performance, Reliability

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 69

Publisher: JISADS.com

Type
Description

Language
Description Focus Description Dimension

Requirement

Analysis

Elements

Non-Functional

Aspects

Software

Capability

FRORL/RT-FRORL

[34,35,33]

Interactions between real-

world objects and their

constraints

Rules modifying object

interactions

Activity

decomposition,

refinement

Real-time

RSML [10]
Controllable variables in

real-world processes
Input/output sequences

Superstates,

AND

decomposition

Accuracy, Timing,

Exception handling,

Interfaces

SPARDL [41], Giotto

[39]

Response timing of

controlled devices

Mode transitions and

periodic tasks

Multi-task

modes,

superstates

Timing

ASLAN/RT-ASLAN

[36,37], ASTRAL

[38]

Events triggering system

state changes
State transition sets

Multi-level

refinement
Real-time

RSL [31]

External environment

information for system

processing

Input/output data

processing

Functional

decomposition

Performance, Accuracy,

Timing, Exception

handling

Hume [40]

Shared resources and

communication channels

with environment

Communication

events/resource

consumption sequences

Composite

resource/event

decomposition

Real-time, Resource

constraints, Exception

handling

Software

Design

Constraints

SDL [22]
Internal system structure

design
— — —

requirements analysis elements, and non-functional

requirements.

5.1 Description Focus

The description focus is the language’s perspective on

the world, and it is closely related to how the language

views the role of its own system. Different languages

have different description focuses. Some languages view

their own systems as responsive systems, and their own

systems respond to events, signals, or stimuli from the

external environment. Therefore, their focus is on the

events, signals, or stimuli issued by the external

environment. For example, Statecharts [26] continuously

responds to stimuli through event-driven. Similarly,

Stateflow [30] also describes how software reacts to

signals, events, and time-based conditions. Other similar

languages include Modechart [27], RTRSM, SDL,

RTRL (real-time requirements language) [25], and EBS.

Some languages believe that software will observe and

change the world. For example, SCR focuses on the real-

world attributes monitored by input devices, such as

barometric altitude, ground altitude measured by radar,

etc., and the real-world attributes controlled by output

devices, such as the coordinates of the flight path

markers on the head-up display, radar antenna steering

commands, and turn signals. Similarly, PAISLey focuses

on modeling distributed and continuous (through

discrete simulation) phenomena in a computer system

environment. Its environment model can include

input/output devices, physical objects controlled by its

own system, communication links with humans and

other digital systems, and so on. FRORL (frame-and-rule

oriented requirements language) [34] and RT-FRORL

focus on the interaction between real-world objects, the

objects in the real application domain, their possible

changes, constraints, and assumptions about this world.

RSML (requirements state machine language) [10] is for

process control systems and focuses on the variables that

can be manipulated and controlled in the process to be

controlled. SPARDL and Giotto [39] focus on the

response and response time of the controlled device.

The other focuses are summarized as follows. For

example, ASLAN and RTASLAN and ASTRAL

(ASLAN based TRIO assertion language) [38] view

their own systems as being in a set of states, and they

focus on events that can cause state transitions in their

own systems. RSL and Hume believe that their own

systems are for processing data, so they focus on the

external environment messages to be processed in the

system. GCSR (graphical communicating shared

resources) [78] views a real-time system as a set of

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 70

Publisher: JISADS.com

communication components that execute on a limited set

of serial shared resources and synchronize with the

components through communication channels. It focuses

on the resources shared with the external environment

and their communication channels.

In short, from the current description focus, only

focusing on the changes in the state of the system itself

or only viewing itself as a responder to external stimuli

will make it difficult to solve the problems that come

with the increasing scale of embedded systems. As the

number of devices increases, the external stimulus events

and system state data will also increase, which will make

it difficult for users to understand and accurately express

their needs. The view that software will observe and

transform the world will be strengthened. They can

effectively limit the user’s needs to the scheduling and

control of these external worlds, and define the software

itself by transforming the external world, so that users

can clearly express their actual needs.

5.2 Description Dimension

Due to different description focuses, the description

dimensions of languages will also be different. Many

languages describe software requirements from the

reaction to signals, events, and time conditions. They

often use state machines or state transition diagrams as a

basis for representation. For example, Statecharts

regards software behavior as a collection of elements

such as input and output, conditions, actions, and time

constraints. It extends the ordinary state transition

diagram and introduces hierarchical and concurrent

states to express requirements. Similar ones include

RTRSM and Stateflow. The only difference is that

Stateflow uses the state machine representation method

of Statecharts and flowcharts for description, and also

provides state transition tables and truth tables.

Modechart regards software behavior as a sequence of

specific actions that may be executed in a certain mode.

It pays more attention to the time constraints related to

the start and completion of actions. Similar expression

content also includes SDL. SDL does not use the

common form of state transition diagrams, but uses a

syntax form that emphasizes the reception and sending

of messages, but the meaning of the final description

result is still the same as that of the state transition

diagram.

Some languages describe the sequence of input and

output, although their specific expression forms may be

slightly different. For example, EBS regards software

behavior as events or messages that occur on the

interface and their interrelationships. It defines three

event relationships: time sequence, concurrency, and

enabling relationship, and uses the symbols of these

three event relationships and first-order predicate logic

to describe the behavior of the software. RTRL regards

software behavior as the correspondence between input

events and output events, where the output is not only

related to the set of input signals, but also to the arrival

order of these inputs. RSML uses a black-box method to

describe the behavior of the controller, which also

describes the input and output sequence of the controller.

As the state of the controlled process changes, its

behavior will also change accordingly. The

representation method used is a hierarchical and

concurrent state machine. Methods belonging to this

category also include SCR and PAISLey.

SCR regards software as a set of functions associated

with output data items, and each output data item is

assigned a value by a function. These input data items

and output data items both represent the interaction

events with sensors and actuators. It uses tables to

represent the relationship between modes, states, and

outputs. The basic description unit of PAISLey is a

function, which includes a state space and a successor

function that defines the successor state for each state.

The asynchronous interaction process between functions

is defined by an exchange function. It uses a hierarchical

data flow diagram and an embedded control state

machine to represent function calls.

Some languages view software behavior as a set of rules

that change the interaction of real-world objects, such as

FRORL and RT-FRORL. Their descriptions mainly

include objects and activities. Objects have some

attributes, and activities have participating objects,

preconditions, action sequences, alternative processes,

etc. Actions can be other activities or assertions. Both

activities and assertions are represented using first-order

predicate logic.

Some languages view software behavior as a set of

modes that transition and periodically driven computing

tasks. For example, SPARDL uses modes and mode

transitions to organize tasks, and the mode also contains

a set of computing modules expressed by a control flow

diagram. SPARDL uses the expression form of a state

transition diagram, and the modes allow nesting, which

is similar to the hierarchical state of Statecharts.

Similarly, there is also Giotto, but Giotto does not care

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 71

Publisher: JISADS.com

about the specific implementation of the task, but only

represents the external interaction of the task.

Some languages view software behavior as a set of

transitions that can change the state of their own system.

For example, ASLAN and RTASLAN. They use states

and state transitions to organize the description of

software behavior. The state here refers to the value of

the state variable at a certain moment in the software or

its own system. This state is not suitable for

representation by a state transition diagram. RT-ASLAN

uses assertions and invariants based on first-order

predicate logic to describe the state. ASTRAL retains the

same representation as in ASLAN and RT-ASLAN, and

its semantics are defined in TRIO logic.

There are also descriptions such as GCSR that view their

own system as a set of communication processes that

share limited resources. The behavior of the software

consists of a set of execution step sequences, where each

execution step represents a communication event or a

time and resource consumption action. It uses graphics

to represent these symbols, and its process defines

communication events, events or resource consumption

actions, and the relationship between them. Its semantics

are defined as a labeled transition system or converted to

the process algebra ACSR.

The main dimensions of software requirements

description include behavior and data. Most languages

focus more on the description of behavior, mainly

focusing on its action behavior flow, and describing the

reaction to signals, events, and event conditions. These

languages usually use finite state machines, state

transition diagrams, predicate logic, and other means for

description. Some methods will use hierarchical

concurrent state machines (mode transition diagrams) to

describe complex behaviors. However, there are also a

few languages, such as RSL and Hume, that focus more

on data conversion. These languages focus on processing

the external environment information within the system,

use the input data and output data processing process to

describe the function, and may consider using a

hierarchical structure to represent complex functions.

There are also some works, such as SPARDL, that focus

on both behavior and data. They have both mode

diagrams and computing tasks. For complex embedded

systems, both their behavior and data are complex.

Therefore, in their software requirements description, it

is necessary to organically combine the models of these

two dimensions.

5.3 Requirements Analysis Elements

After investigation, we found that in different

requirements description languages, there are their own

unique description elements to facilitate requirements

analysis at different levels. As shown in Table 2, most

languages can support the expression of requirements at

different granularity levels. Only EBS, which only relies

on events and the relationship between events for

description, has no top-down analysis method.

In requirements analysis, there are mainly the following

forms of analysis elements. Many languages have

proposed the concept of a superstate to represent states

hierarchically. For example, Statecharts not only

proposes a superstate, but also proposes “AND-

decomposition” and “XOR-decomposition” for the

superstate, allowing cross-layer migration and parallel

relationship representation of states, and supporting the

continuous refinement of behavior description from high

to low levels. This mechanism of Statecharts has been

borrowed by many languages, including Modechart,

RTRSM*, Stateflow, and RSML.

Some languages use modes to organize tasks. For

example, the SCR method points out that after

representing the system output data as a mapping

relationship between the system state and input, modes

are used to organize these mapping relationships, and the

modes are different system state classes. SPARDL uses

modes to organize tasks. Its mode diagram contains two

levels. The high level is the mode and mode transition,

and the low level is a set of computing tasks represented

by a control flow in each mode. The Giotto language [39]

is also similar. The difference is that the modes in

SPARDL allow nesting, which is similar to the

superstate in Statecharts. The tasks in Giotto allow

concurrent execution, while the control flow in SPARDL

is sequential execution.

Some languages are divided into many levels and define

the relationship between their levels. For example, the

ASLAN language, whose requirements description

contains a sequence of levels, and each level is an

abstract view of the system’s data types. The top-level

view is a very abstract model of the system’s

composition, and also includes what the system does

(state transitions) and the key requirements that the

system must meet (invariants, constraints). Lower levels

will add more details, and the implementation of high-

level requirements by low-level requirements is

represented by an implementation relationship. The

ASTRAL language retains the hierarchical

representation of ASLAN. The Hume language supports

a three-layer representation. The outermost layer

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 72

Publisher: JISADS.com

represents the external (static)

declaration/metaprogramming layer, the middle layer

describes the static layout of the dynamic process, and

the inner layer describes each process as a dynamic

mapping from a pattern that matches the input to an

expression that produces the output. The RTRL language

uses features to express requirements, decomposes

requirements into a set of features, and features contain

many independently implemented functions.

Some languages support the decomposition of language

elements. For example, the FRORL language uses the

frame of objects and activities to express the

requirements model. The concept of activity is an

abstract concept. It represents each activity frame as a

variable, and different instances of the same activity can

be represented in the same frame. It provides a

mechanism to decompose an activity into multiple sub-

activities, and these sub-activities can be in a sequential

or parallel relationship. At the same time, it also supports

a stepwise refinement mechanism. The PAISLey

specification is composed of a set of function definitions,

and the call of functions is represented by a hierarchical

data flow diagram and an embedded control table. In

GCSR, an entity is a basic concept. It can contain many

nodes (such as resources, events, etc.) and composite

nodes (a group of resources and events), and can be

decomposed into lower-level entities. The RSL language

contains AND and OR nodes to decompose the

conditions for processing requirements. The SDL

language uses blocks to organize the system’s behavior

and structure. This block can be continuously

decomposed into multiple blocks until a block only

contains processes. SDL also provides a variety of

substructure concepts: the substructure of a block is used

to further describe the internal structure of the block; the

substructure of a channel is used to describe the behavior

within the channel; the signal refinement mechanism is

the refinement of signals, the purpose of which is to hide

the details of low-level signals to obtain a high-level

abstraction, allowing the system’s behavior to be

described from top to bottom.

In addition, in order to support the requirements

hierarchy in the language, some languages also have

method support. For example, the SREM method [21] to

which the RSL language belongs supports the

decomposition of functions into a group of low-level

functions. The SCR method and PAISLey also have

method support. These methods provide a process for

obtaining the specifications of these requirements

description languages, which is also a very important

part.

In short, the existing languages basically support the

expression of different description granularities, which

may be the same or different language elements, and

support the description of requirements of different

granularities, so that the requirements can be

continuously improved from a higher abstract level of

description of the same type to a lower level of specific

description through decomposition, refinement, and

other means. There are also some works that support the

expression of requirements granularity of different

requirement types and establish the refinement or

decomposition relationship between them. Some

languages will also provide decomposition and

refinement mechanisms, and even process support, but

decomposition and refinement all rely on requirements

analysts and domain experts, and their quality seriously

depends on human experience. In particular, the current

decomposition is basically functional division, and there

is no intertwining between requirements. For complex

embedded systems, both decomposition and refinement

are needed, but how to improve efficiency and quality is

still a problem to be solved.

5.4 Supported Non-functional Requirements

According to the investigation, the non-functional

requirements involved in the current software

requirements description languages mainly include time-

related requirements (timing, real-time, delay,

performance, time constraints, etc.), accuracy, exception

handling, and resource constraints. Time-related

requirements are involved more.

Some languages use the concept of timers to represent

delays. For example, Statecharts and SDL both use

timers to specify the delay time on the basis of the state

and transition of the functional requirements description.

After this time, the timer generates a specific (timeout)

event or signal, which in turn leads to a state transition.

Some languages express periodic time constraints and

their corresponding sporadic time constraints. For

example, the functional description in SCR is divided

into demand functions and periodic functions, which

correspond to these two time constraints. The demand

function specifies a specific trigger event, and the

periodic function specifies the start and stop events, as

well as the execution period. The time constraint of

Modechart is related to the execution of actions under a

specific mode and conditions of the system. The sporadic

time constraint is expressed as the completion deadline

and interval time, and the periodic time constraint is

expressed as the execution period and completion

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 73

Publisher: JISADS.com

deadline. Similarly, the periodic time constraint in RT-

FRORL is represented as a simple periodic attribute of a

time activity, and the representation of the paroxysmal

time constraint introduces the operation of a global clock

variable. The time requirement in RT-ASLAN is

expressed as the sequential relationship of state

transitions and the periodic attribute of transitions.

Other time-related expressions are as follows. The

timing in ESB is expressed by defining the time

sequence relationship of events and is integrated into the

functional description. The performance requirement in

RSL is expressed by a specific data processing path in

the R-net, and the performance requirement is expressed

as the maximum and minimum response time of a

specific path. The real-time requirement in GCSR is

related to actions, and the execution of actions takes a

certain amount of time. ASTRAL, on the basis of RT-

ASLAN, provides operations for the start and end times

of state transitions, and also adds the requirement of

scheduling time for state transitions. The time

requirements in Giotto and SPARDL are first expressed

as their described computing tasks are all periodic. The

mode in SPARDL has a periodic attribute, and the mode

in Giotto has a conversion frequency. SPARDL also

provides timing predicates and timing control flow

relationships to describe the transition conditions of

modes and control the computing tasks within the

modes. The performance requirement in PAISLey is

related to the function that describes its process behavior.

The time requirement in RSML is expressed in the

guarding condition of the state transition and is

expressed as a time function. RSML describes three time

functions: the variable value at the previous time point,

the true value of the condition at a certain point in the

past, and the event implicitly generated based on time

(that is, the timeout relative to the state item), all of

which are based on the guarding condition.

For exception handling in robustness, SCR records all

abnormal events and the system’s response as a separate

part, which is divided into three categories: resource

(device) failure, incorrect input data, and incorrect

internal data. The superstate and hierarchical state

machine in Statecharts can flexibly represent local

abnormal events and global abnormal events and their

handling, and RSML is similar to it. GCSR clearly

handles abnormal events through an exception edge,

allowing cross-level migration of states, which is similar

to Statecharts.

Other non-functional requirements are expressed as

follows. Accuracy requirements are all related to data.

For example, the accuracy requirement in RSL is related

to the data stored at the verification point. The resource

requirement in GCSR is related to actions, and the

execution of actions consumes a set of resources. The

reliability requirement in PAISLey is expressed by

probability and is related to the function that describes

its process behavior.

In short, from the perspective of non-functional

requirements, the description of software capability

requirements includes functional requirements. Its

existing non-functional requirements descriptions only

include some requirements that can be expressed on the

basis of functions, such as time, reliability, exception

handling, and accuracy. Other types of requirements that

cannot be directly expressed on the basis of functions,

such as personal safety, are not involved.

6. ANALYSIS OF THE DEVELOPMENT TREND

OF REQUIREMENTS DESCRIPTION FOR

EMBEDDED SYSTEMS

This section starts with the challenges faced by the

requirements description of complex embedded systems,

proposes the need to study new embedded software

requirements description languages, and further

proposes specific requirements for the requirements

description for the intelligent synthesis of embedded

software.

6.1 Challenges for Requirements Description of

Complex Embedded Systems

The development of embedded systems is a process of

“embedding” software into a “embeddable” computing

device. First, the computing function is “embedded” into

the application object, and then with the access of

multiple forms of networks, the embedded system

presents a networked feature. In recent years, embedded

software has been integrated into more physical objects,

forming a variety of embeddable digital devices. They

have the ability of environmental perception and

autonomous interaction, so that the computing device is

deeply “embedded” in the application object and

“disappears” in the physical world, promoting the deep

integration of the ternary world of human, machine, and

object. Such complex embedded systems bring the

following challenges to the description of software

requirements.

First, the description of complex embedded requirements

cannot only involve software capability requirements,

but should describe all types of requirements involved in

embedded systems, that is, task intent, system

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 74

Publisher: JISADS.com

requirements, peripheral requirements, operating

platform constraints, and software design constraints.

The development of embedded software starts from the

task intent, and its task intent is closely related to the

external interactive environment. The task intent and

system capability requirements are its source. Embedded

software will be directly placed in the physical world

through a variety of sensing devices and acting devices,

and its system equipment requirements must also be

recorded. In addition, embedded software needs to run

on a specific platform according to a specific strategy,

and its resources, performance, etc. must be constrained.

Software design constraints may also exist.

Secondly, it is necessary to define the description

dimensions of each requirement level. Complex

embedded systems involve complex control processes

and calculation processes, including two major

dimensions of behavior and data. But at different

requirement levels, the dimensions may be completely

different. At the task intent level, it is mainly for the

expected effect on the external environment. The system

capability requirement is as long as the input and output

sequence with the external environment. The software

requirement is the input and output sequence with the

system equipment, and the software design constraint

includes the calculation formula between the input and

output.

Third, it is necessary to define a systematic software

requirements specification method to establish a tracking

relationship between different levels from task intent to

software requirements (including functional and non-

functional requirements) to cope with the increasing

complexity of embedded system requirements changes.

In embedded systems, the system task intent is the

beginning of software development, the system

capability requirements meet the task intent, and the

software capability requirements and system equipment

requirements jointly meet the system capability

requirements. With the tracking relationship, the

software requirements can be effectively changed

according to the reasons for the requirements changes.

Fourth, it is necessary to provide more efficient

requirements analysis methods for the decomposition

and refinement mechanism of requirements. In

embedded systems, due to the strong device dependence

of its software, the control requirements of the software

requirements are intertwined, and the scheduling and

control of the same device appear in different

requirements, such as the two requirements of

“automatic light off” and “manual light off” are both to

control the light. This device intertwining makes the

original partitioned requirements decomposition (no

intertwining) no longer applicable. They do not pay

attention to the characteristics of the device in the

decomposition, which may lead to inconsistent

requirements after decomposition, such as one

requirement may require the light to be turned on, while

another requirement requires the light to be turned off at

the same time. In addition, with the increase of

embedded devices and the complexity of embedded

systems, manual requirements analysis will become a

bottleneck in development, and automated requirements

analysis methods are needed to improve efficiency.

Complex embedded systems need to design new

requirements description languages. In the design, it is

necessary to target the characteristics of embedded

software, describe the task intent of embedded software,

extract the main components of the embedded software

language on the basis of requirements analysis at all

levels and dimensions, and define the logic of the

language to support the expression of embedded

software requirements. This is a task that spans the entire

requirements stage of embedded software. It is necessary

to comprehensively learn from and expand existing

requirements engineering methods, combine effective

requirements extraction, modeling, analysis, simulation,

and verification technologies, propose a language

structure, and define a structured embedded system

requirements description language with sufficient

expressive power.

6.2 Requirements from the Intelligent Synthesis of

Embedded Software

At present, software intelligent synthesis has become a

software automation technology that has attracted much

attention [134]. Software intelligent synthesis refers to

the use of artificial intelligence foundations such as

machine learning on the basis of traditional software

synthesis technology to automatically synthesize

software that meets user intent by using existing code

knowledge. The software requirements specification that

carries the user’s intent is the basis for software

intelligent synthesis, and its importance is self-evident.

The intelligent synthesis of embedded system software

will also become a future research hotspot [135], which

brings new requirements to the description language of

embedded system software requirements specification.

First, from the perspective of description dimension, it

needs to express various dimensions of requirements

specifications, including behavior, data, constraints, etc.

Embedded software is the same as general software, and

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 75

Publisher: JISADS.com

each piece of code has a control flow and a data flow.

Since most embedded software needs to schedule system

equipment in real time, the description of system

equipment must be added to the requirements

description, such as ports, response time, communication

protocols, etc. Not only that, it also needs to add

constraints on performance, efficiency, safety,

reliability, etc., so that software that meets the needs of

equipment scheduling can be synthesized.

Secondly, from the perspective of description

granularity, it is best to decompose the software

requirements to a relatively small granularity, also

known as atomic requirements. This granularity is best

to be at the same description granularity as the function

of the software asset, or a smaller granularity.

Refinement technology is still needed to improve the

description of requirements from a high abstract level to

a low-level specific description. In addition, due to the

high complexity of current embedded systems, the

decomposition or decoupling of requirements is

essential. Different from the software decomposition of

traditional information systems—functional division, the

software of embedded systems is closely related to

hardware devices, and its decomposition also needs to

consider that the same device may be called in different

functions, and there is device sharing, which will bring

new challenges to the decoupling of intertwined software

requirements.

Third, from the perspective of the description scheme, a

complete project requirements specification must also

clarify the dependency relationship between atomic

requirements, so as to synthesize complete project code.

Due to the intertwining of devices between atomic

requirements, it may bring control dependencies. For

example, the requirement “automatic light on” requires

the light to be in a powered state first, while the

requirement “initialization” will make the light enter a

powered state, then “automatic light on” is control-

dependent on “initialization.” Due to the data sharing

between atomic requirements, it may bring data

dependencies, that is, one requirement produces data,

and another requirement uses data. These control

dependencies and data dependencies may be expressed

as sequential or concurrent relationships between atomic

requirements, which will affect the subsequent synthesis.

Finally, from the perspective of description form, the

software requirements description language for

intelligent synthesis must be machine-understandable to

facilitate subsequent code synthesis. It is best to be

formally expressed, with strict syntax and precise

semantics. Its software requirements specification can be

automatically converted into a simulation model or a

verification model. Before synthesizing the software, the

requirements can be simulated, confirmed, and verified.

The test cases of the final synthesized software can be

automatically generated, and the software can be tested

after synthesis. After multiple simulations, verifications,

and tests, the quality of the synthesized code is

guaranteed.

7. CONCLUSION

This paper conducted a systematic literature review on

the topic of requirements description for embedded

systems, provided an overview of the current situation of

requirements description types for embedded systems,

comprehensively compared the capabilities of existing

embedded system requirements description languages,

summarized the challenges faced by the requirements

description of complex embedded systems, predicted

future trends, and discussed the capability requirements

of the requirements description language for embedded

systems for the task of intelligent software synthesis.

During the review and investigation process, our

exclusion criteria may have some bias, which may cause

our review paper to not cover all relevant fields. For

example, we did not include references written in other

languages. However, since most research results have

corresponding English versions, this will not have a

substantial impact on our investigation of the current

situation of embedded requirements description types

and requirements description languages. In addition, the

search process may have a certain degree of instability,

and the search engine may sometimes have a large

number of documents that are not related to the search

keywords. However, documents with higher relevance

will usually be displayed first, so it will not affect our

research results.

Currently, most requirements description languages only

describe software capability requirements and do not

describe various other possible types of requirements,

such as system task intent, system capability

requirements, etc. For the future intelligent synthesis of

embedded software, the new requirements description

language describes various types of requirements

starting from the task intent, establishes their tracking

relationship, can analyze the problem of control

requirements intertwining caused by device sharing, and

through decoupling, describes the requirements at a more

appropriate granularity to facilitate subsequent code

synthesis based on software assets.

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 76

Publisher: JISADS.com

REFERENCES

1. Broy M. Challenges in automotive software engineering. In:

Proc. of the 28th Int’l Conf. on Software Engineering.

Shanghai: ACM, 2006. 33–42. [doi:

10.1145/1134285.1134292]

2. Feng JC, Miao WK, Zheng HY, Huang YH, Li JW, Wang

Z, Su T, Gu B, Pu GG, Yang MF, He JF. FREPA: An

automated and formal approach to requirement modeling and

analysis in aircraft control domain. In: Proc. of the 28th ACM

Joint Meeting on European Software Engineering Conf. and

the Symp. on Foundations of Software Engineering. ACM,

2020. 1376–1386. [doi: 10.1145/3368089.3417047]

3. Mumtaz S, Alsohaily A, Pang ZB, Rayes A, Tsang KF,

Rodriguez J. Massive Internet of Things for industrial

applications: Addressing wireless IIoT connectivity challenges

and ecosystem fragmentation. *IEEE Industrial Electronics

Magazine*, 2017, 11(1): 28–33. [doi:

10.1109/MIE.2016.2618724]

4. Broy M, Stauner T. Requirements engineering for embedded

systems. 1999.

https://wwwbroy.in.tum.de/publ/papers/femsys_boesswet_19

97_Conference.pdf#:~:text=In%20requirements%20engineeri

ng%20we%20describe%20the%20required%20behaviour,be

%20as%20simple%2C%20abstract%2C%20and%20suggestiv

e%20as%20possible

5. Naumchev A, Meyer B, Mazzara M, Galinier F, Bruel JM,

Ebersold S. Autoreq: Expressing and verifying embedded

software requirements. arXiv:1710.02801v1, 2017.

6. Davis AM. The design of a family of application-oriented

requirements languages. *Computer*, 1982, 15(5): 21–28.

[doi: 10.1109/MC.1982.1654021]

7. Melhart BE. Specification languages for embedded systems:

A survey. Technical Report, Irvine: UCI, 1988.

8. Jin Z. *Environment Modeling-based Requirements

Engineering for Software Intensive Systems*. Amsterdam:

Elsevier, 2018. [doi: 10.1016/C2014-0-00030-5]

9. Kitchenham B. Procedures for performing systematic

reviews. Technical Report, 0400011T.1, Keele: Keele

University, 2004. 1–26.

10. Leveson NG, Heimdahl MPE, Hildreth H, Reese JD.

Requirements specification for process-control systems.

IEEE Trans. on Software Engineering, 1994, 20(9): 684–

707. [doi: 10.1109/32.317428]

11. Lavi JZ, Kudish J. Systems modeling & requirements

specification using ECSAM: An analysis method for

embedded & computer-based systems. *Innovations in

Systems and Software Engineering*, 2005, 1(2): 100–115.

[doi: 10.1007/s11334-005-0010-4]

12. Ponsard C, Massonet P, Molderez JF, Rifaut A, van

Lamsweerde A, van Tran H. Early verification and validation

of mission critical systems. *Formal Methods in System

Design*, 2007, 30(3): 233–247. [doi: 10.1007/s10703-006-

0028-8]

13. Braun P, Broy M, Houdek F, Kirchmayr M, Müller M,

Penzenstadler B, Pohl K, Weyer T. Guiding requirements

engineering for software-intensive embedded systems in the

automotive industry. *Computer Science—research and

Development*, 2014, 29(1): 21–43. [doi: 10.1007/s00450-010-

0136-y]

14. Heninger KL. Specifying software requirements for

complex systems: New techniques and their application. *IEEE

Trans. on Software Engineering*, 1980, SE-6(1): 2–13. [doi:

10.1109/TSE.1980.230208]

15. Parnas DL, Madey J. Functional documents for computer

systems. *Science of Computer Programming*, 1995, 25(1):

41–61. [doi: 10.1016/0167-6423(95)96871-J]

16. Heitmeyer CL. Software cost reduction. In: Marciniak JJ,

ed. *Encyclopedia of Software Engineering*. Hoboken: John

Wiley & Sons, 2002. [doi: 10.1002/0471028959.sof307]

17. Yoo J, Kim T, Cha S, Lee JS, Seong Son H. A formal

software requirements specification method for digital nuclear

plant protection systems. *Journal of Systems and Software*,

2005, 74(1): 73–83. [doi: 10.1016/j.jss.2003.10.018]

18. Wang F, Yang ZB, Huang ZQ, Zhou Y, Liu CW, Zhang

WB, Xue L, Xu JM. Approach for generating AADL model

based on restricted natural language requirement template.

Ruan Jian Xue Bao/Journal of Software, 2018, 29(8): 2350–

2370 (in Chinese with English abstract).

http://www.jos.org.cn/1000-9825/5530.htm [doi:

10.13328/j.cnki.jos.005530]

19. Pereira T, Sousa A, Silva R, Albuquerque D, Alencar F,

Castro J. A metamodel to guide a requirements elicitation

process for embedded systems. In: Proc. of the 11th Int’l Conf.

on the Quality of Information and Communications

Technology. Coimbra: IEEE, 2018. 101–109. [doi:

10.1109/QUATIC.2018.00023]

20. Apvrille L, Li LW. Harmonizing safety, security and

performance requirements in embedded systems. In: Proc. of

the 2019 Design, Automation & Test in Europe Conf. &

Exhibition (DATE). Florence: IEEE, 2019. 1631–1636. [doi:

10.23919/DATE.2019.8715124]

21. Alford M. SREM at the age of eight; the distributed

computing design system. *Computer*, 1985, 18(4): 36–46.

[doi: 10.1109/MC.1985.1662863]

22. Belina F, Hogrefe D. The CCITT-specification and

description language SDL. *Computer Networks and ISDN

Systems*, 1989, 16(4): 311–341. [doi: 10.1016/0169-

7552(89)90078-0]

23. Liu SY, Offutt AJ, Ho-Stuart C, Sun Y, Ohba M. SOFL: A

formal engineering methodology for industrial applications.

IEEE Trans. on Software Engineering, 1998, 24(1): 24–45.

[doi: 10.1109/32.663996]

24. Liu S, Asuka M, Komaya K, Nakamura Y. An approach to

specifying and verifying safety-critical systems with practical

formal method SOFL. In: Proc. of the 4th IEEE Int’l Conf. on

Engineering of Complex Computer Systems. Monterey: IEEE,

1998. 100–114. [doi: 10.1109/ICECCS.1998.706660]

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 77

Publisher: JISADS.com

25. Taylor B. A method for expressing the functional

requirements of real-time systems. *Annual Review in

Automatic Programming*, 1980, 10: 111–120. [doi:

10.1016/0066-4138(82)90015-5]

26. Harel D. Statecharts: A visual formalism for complex

systems. *Science of Computer Programming*, 1987, 8(3):

231–274. [doi: 10.1016/0167-6423(87)90035-9]

27. Jahanian F, Mok AK. Modechart: A specification language

for real-time systems. *IEEE Trans. on Software Engineering*,

1994, 20(12): 933–947. [doi: 10.1109/32.368134]

28. Shu FD, Wu GQ, Wang M. Embedded real-time software-

oriented requirements engineering environment—SREE.

Computer Science, 2002, 29(4): 4–8, 14 (in Chinese with

English abstract). [doi: 10.3969/j.issn.1002-

137X.2002.04.002]

29. Shu FD, Wu GQ, Li MS. An embedded real-time software

oriented requirements specification language and checking

methods. *Ruan Jian Xue Bao/Journal of Software*, 2004,

15(11): 1595–1606 (in Chinese with English abstract).

http://www.jos.org.cn/1000-9825/15/1595.htm

30. The MathWorks. *Stateflow® and Stateflow® CoderTM

User’s Guide*. Natick: The MathWorks, 2009.

31. Bruyn W, Jense R, Keskar D, Ward P. An extended systems

modeling language (ESML). *ACM SIGSOFT Software

Engineering Notes*, 1988, 13(1): 58–67. [doi:

10.1145/43857.43866]

32. Zave P. An operational approach to requirements

specification for embedded systems. *IEEE Trans. on Software

Engineering*, 1982, SE-8(3): 250–269. [doi:

10.1109/TSE.1982.235254]

33. Chen BS, Yeh RT. Formal specification and verification of

distributed systems. *IEEE Trans. on Software Engineering*,

1983, SE-9(6): 710–722. [doi: 10.1109/TSE.1983.235434]

34. Tsai JJP. A knowledge-based system for software design.

IEEE Journal on Selected Areas in Communications, 1988,

6(5): 828–841. [doi: 10.1109/49.634]

35. Tsai JJJP, Jang HC. A knowledge-based approach for the

specification and analysis of real-time software systems. *Int’l

Journal on Artificial Intelligence Tools*, 1992, 1(1): 1–35.

[doi: 10.1142/S0218213092000119]

36. Auernheimer B, Kemmerer RA. ASLAN User’s Manual.

Santa Barbara: University of California, 1985.

37. Auernheimer B, Kemmerer RA. RT-ASLAN: A

specification language for real-time systems. *IEEE Trans. on

Software Engineering*, 1986, SE-12(9): 879–889. [doi:

10.1109/TSE.1986.6313044]

38. Ghezzi C, Kemmerer RA. ASTRAL: An assertion language

for specifying realtime systems. In: Proc. of the 3rd European

Software Engineering Conf. Milan: Springer, 1991. 122–146.

[doi: 10.1007/3540547428_46]

39. Henzinger TA, Horowitz B, Kirsch CM. Giotto: A time-

triggered language for embedded programming. In: Proc. of the

1st Int’l Workshop on Embedded Software. Tahoe City:

Springer, 2001. 166–184. [doi: 10.1007/3-540-45449-7_12]

40. Hammond K, Michaelson G. Hume: A domain-specific

language for real-time embedded systems. In: Proc. of the 2nd

Int’l Conf. on Generative Programming and Component

Engineering. Erfurt: Springer, 2003. 37–56. [doi: 10.1007/978-

3-540-39815-8_3]

41. Gu B, Dong YW, Wang Z. Formal modeling approach for

aerospace embedded software. *Ruan Jian Xue Bao/Journal of

Software*, 2015, 26(2): 321–331 (in Chinese with English

abstract). http://www.jos.org.cn/1000-9825/4784.htm [doi:

10.13328/j.cnki.jos.004784]

42. Miao WK, Pu GG, Yao YB, Su T, Bao DZ, Liu Y, Chen

SH, Xiong KP. Automated requirements validation for ATP

software via specification review and testing. In: Proc. of the

18th Int’l Conf. on Formal Engineering Methods. Tokyo:

Springer, 2016. 26–40. [doi: 10.1007/978-3-319-47846-3_3]

43. Feng JC. Detailed requirement of embedded system

oriented formal modeling and analysis [Ph.D. Thesis].

Shanghai: East China Normal University, 2022 (in Chinese

with English abstract). [doi:

10.27149/d.cnki.ghdsu.2022.004041]

44. Wang S, Feng JC, Zhu JY, Huang YH., Zheng HY, Xu XR,

Miao WK, Zhang X, Pu GG. A dimensional analysis method

for the requirements model of railway control software.

Chinese Journal of Computers, 2020, 43(11): 2152–2165 (in

Chinese with English abstract). [doi:

10.11897/SP.J.1016.2020.02152]

45. Dietrich D, Atlee JM. A pattern for structuring the

behavioural requirements of features of an embedded system.

In: Proc. of the 3rd Int’l Workshop on Requirements Patterns

(RePa). Rio De Janeiro: IEEE, 2013. 1–7. [doi:

10.1109/RePa.2013.6602664]

46. Hoang TS, Snook C, Salehi A, Butler M, Ladenberger L.

Validating and verifying the requirements and design of a

haemodialysis machine using the rodin toolset. *Science of

Computer Programming*, 2018, 158: 122–147. [doi:

10.1016/j.scico.2017.11.002]

47. Park S. Software requirement specification based on a gray

box for embedded systems: A case study of a mobile phone

camera sensor controller. *Computers*, 2019, 8(1): 20. [doi:

10.3390/computers8010020]

48. Ghazel M, Yang J, El-Koursi EM. A pattern-based method

for refining and formalizing informal specifications in critical

control systems. *Journal of Innovation in Digital

Ecosystems*, 2015, 2(1–2): 32–44. [doi:

10.1016/j.jides.2015.11.001]

49. Galinier F. A DSL for requirements in the context of a

seamless approach. In: Proc. of the 33rd IEEE/ACM Int’l Conf.

on Automated Software Engineering. Montpellier: IEEE, 2018.

932–935. [doi: 10.1145/3238147.3241538]

50. Bujorianu MC, Bujorianu ML. An integrated specification

framework for embedded systems. In: Proc. of the 5th IEEE

Int’l Conf. on Software Engineering and Formal Methods

(SEFM 2007). London: IEEE, 2007. 161–172. [doi:

10.1109/SEFM.2007.6]

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 78

Publisher: JISADS.com

51. Lattemann F, Lehmann E. A methodological approach to

the requirement specification of embedded systems. In: Proc.

of the 1st IEEE Int’l Conf. on Formal Engineering Methods.

Hiroshima: IEEE, 1997. 183–191. [doi:

10.1109/ICFEM.1997.630425]

52. Maraninchi F, Rémond Y. Argos: An automaton-based

synchronous language. *Computer Languages*, 2001, 27(1–

3): 61–92. [doi: 10.1016/S0096-0551(01)00016-9]

53. Roßkopf A, Tempelmeier T. Aspects of flight control

software—A software engineering point of view. *Control

Engineering Practice*, 2000, 8(6): 675–680. [doi:

10.1016/S0967-0661(00)00012-5]

54. Fuchs NE, Schwertel U, Schwitter R. Attempto controlled

English—Not just another logic specification language. In:

Proc. of the 8th Int’l Workshop on Logic Programming

Synthesis and Transformation. Manchester: Springer, 1999. 1–

20. [doi: 10.1007/3-540-48958-4_1]

55. Pettersson F, Ivarsson M, Öhman P. Automotive use case

standard for embedded systems. *ACM SIGSOFT Software

Engineering Notes*, 2005, 30(4): 1–6. [doi:

10.1145/1082983.1083193]

56. Shan JH, Zhao HY, Wang JB, Wang RX, Ruan CL, Yao

ZX. An extended TASM-based requirements modeling

approach for real-time embedded software: An industrial case

study. In: Proc. of the 15th National Software Application

Conf. on Software Engineering and Methodology for

Emerging Domains. Kunming: Springer, 2016. 19–34. [doi:

10.1007/978-981-10-3482-4_2]

57. Jung H, Lee C, Kang SH, Kim S, Oh H, Ha S. Dynamic

behavior specification and dynamic mapping for real-time

embedded systems: Hopes approach. *ACM Trans. on

Embedded Computing Systems*, 2014, 13(4s): 135. [doi:

10.1145/2584658]

58. Post A, Menzel I, Podelski A. Applying restricted english

grammar on automotive requirements—Does it work? A case

study. In: Proc. of the 17th Int’l Working Conf. on

Requirements Engineering: Foundation for Software Quality.

Essen: Springer, 2011. 166–180. [doi: 10.1007/978-3-642-

19858-8_17]

59. Yue T, Briand LC, Labiche Y. A use case modeling

approach to facilitate the transition towards analysis models:

Concepts and empirical evaluation. In: Proc. of the 12th Int’l

Conf. on Model Driven Engineering Languages and Systems.

Denver: Springer, 2009. 484–498. [doi: 10.1007/978-3-642-

04425-0_37]

60. Stachtiari E, Mavridou A, Katsaros P, Bliudze S, Sifakis J.

Early validation of system requirements and design through

correctness-by-construction. *Journal of Systems and

Software*, 2018, 145: 52–78. [doi: 10.1016/j.jss.2018.07.053]

61. Mavin A, Wilkinson P, Harwood A, Novak M. Easy

approach to requirements syntax (EARS). In: Proc. of the 17th

IEEE Int’l Requirements Engineering Conf. Atlanta: IEEE,

2009. 317–322. [doi: 10.1109/RE.2009.9]

62. Mavin A, Wilkinson P. Ten years of EARS. *IEEE

Software*, 2019, 36(5): 10–14. [doi:

10.1109/MS.2019.2921164]

63. Górski J. Formal specification of real time systems.

Computer Physics Communications, 1988, 50(1–2): 71–88.

[doi: 10.1016/0010-4655(88)90117-8]

64. Al-Fedaghi S. High-level representation of time in

diagrammatic specification. *Procedia Computer Science*,

2015, 62: 478–486. [doi: 10.1016/j.procs.2015.08.519]

65. Denger C, Berry DM, Kamsties E. Higher quality

requirements specifications through natural language patterns.

In: Proc. of the 2003 Symp. on Security and Privacy. Herzlia:

IEEE, 2003. 80–90. [doi: 10.1109/SWSTE.2003.1245428]

66. Maraninchi F, Rémond Y. Object-oriented logical

specification of time-critical systems. *ACM Trans. on

Software Engineering and Methodology*, 1994, 3(1): 56–98.

[doi: 10.1145/174634.174636]

67. Rashid M, Anwar MW, Azam F, Kashif M. Model-based

requirements and properties specifications trends for early

design verification of embedded systems. In: Proc. of the 11th

System of Systems Engineering Conf. (SoSE). Kongsberg:

IEEE, 2016. 1–7. [doi: 10.1109/SYSOSE.2016.7542917]

68. Ravindran B, Edwards S. Palette: A reuse-oriented

specification language for real-time systems. In: Proc. of the

6th Int’l Conf. on Software Reuse: Advances in Software

Reusability. Vienna: Springer, 2000. 20–40. [doi:

10.1007/978-3-540-44995-9_2]

69. Kang KC, Ko KI. PARTS: A temporal logic-based real-

time software specification and verification method. In: Proc.

of the 17th Int’l Conf. on Software Engineering. Seattle: IEEE,

1995. 169. [doi: 10.1109/ICSE.1995.495030]

70. Videira C, Da Silva AR. Patterns and metamodel for a

natural-language-based requirements specification language.

In: Proc. of the 17th Conf. on Advanced Information Systems

Engineering. Porto: CAiSE, 2005.

71. Mahmud N, Seceleanu C, Ljungkrantz O. ReSA: An

ontology-based requirement specification language tailored to

automotive systems. In: Proc. of the 10th IEEE Int’l Symp. on

Industrial Embedded Systems (SIES). Siegen: IEEE, 2015. 1–

10. [doi: 10.1109/SIES.2015.7185035]

72. Mahmud N, Seceleanu C, Ljungkrantz O. Specification and

semantic analysis of embedded systems requirements: From

description logic to temporal logic. In: Proc. of the 15th Int’l

Conf. on Software Engineering and Formal Methods. Trento:

Springer, 2017. 332–348. [doi: 10.1007/978-3-319-66197-

1_21]

73. Welch LR, Ravindran B, Shirazi BA, Bruggeman C.

Specification and modeling of dynamic, distributed real-time

systems. In: Proc. of the 19th IEEE Real-time Systems Symp.

Madrid: IEEE, 1998. 72–81. [doi:

10.1109/REAL.1998.739732]

74. Ebert C. Specifying, designing and rapid prototyping

computer systems with structured Petri nets. In: Frey HH, ed.

Safety of Computer Control Systems 1992. Amsterdam:

Elsevier, 1992. 19–24. [doi: 10.1016/B978-0-08-041893-

3.50008-2]

75. Damm W, Hungar H, Josko B, Peikenkamp T, Stierand I.

Using contract-based component specifications for virtual

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 79

Publisher: JISADS.com

integration testing and architecture design. In: Proc. of the 2011

Design, Automation & Test in Europe. Grenoble: IEEE, 2011.

1–6. [doi: 10.1109/DATE.2011.5763167]

76. Camilli M, Gargantini A, Scandurra P. Zone-based formal

specification and timing analysis of real-time self-adaptive

systems. *Science of Computer Programming*, 2018, 159: 52–

78. [doi: 10.1016/j.scico.2018.03.002]

77. Ben-Abdallah H, Lee I, Kim YS. The integrated

specification and analysis of functional, temporal, and resource

requirements. In: Proc. of the 3rd IEEE Int’l Symp. on

Requirements Engineering. Annapolis: IEEE, 1997. 198–209.

[doi: 10.1109/ISRE.1997.566870]

78. Doering D, Pereira CE, Denes P, Joseph J. A model driven

engineering approach based on aspects for high speed scientific

X-rays cameras. In: Proc. of the 16th IEEE Int’l Symp. on

Object/Component/Service-Oriented Real-Time Distributed

Computing (ISORC 2013). Paderborn: IEEE, 2013. 1–8. [doi:

10.1109/ISORC.2013.6913190]

79. Dutertre B, Stavridou V. Formal requirements analysis of

an avionics control system. *IEEE Trans. on Software

Engineering*, 1997, 23(5): 267–278. [doi:

10.1109/32.588520]

80. Faulk S, Brackett J, Ward P, Kirby J. The core method for

real-time requirements. *IEEE Software*, 1992, 9(5): 22–33.

[doi: 10.1109/52.1568714]

81. Ferrante O, Passerone R, Ferrari A, Mangeruca L, Sofronis

C. BCL: A compositional contract language for embedded

systems. In: Proc. of the 2014 IEEE Emerging Technology and

Factory Automation (ETFA). Barcelona: IEEE, 2014. 1–6.

[doi: 10.1109/ETFA.2014.7005353]

82. Pierce RH, Ayache S, Ward R, Stevens J, Clifton H, Galle

J. Capturing and verifying performance requirements for hard

real time systems. In: Proc. of the 1997 Int’l Conf. on Reliable

Software Technologies. London: Springer, 1997. 137–148.

[doi: 10.1007/3-540-63114-3_13]

83. Du G, Lin J. Real-time embedded software requirements

description framework exploration. *Quality and Reliability*,

2008, (1): 47–50.

84. Goldsack SJ, Finkelstein ACW. Requirements engineering

for real-time systems. *Software Engineering Journal*, 1991,

6(3): 101–115. [doi: 10.1049/sej.1991.0014]

85. Ravn AP, Rischel H, Hansen KM. Specifying and verifying

requirements of real-time systems. *IEEE Trans. on Software

Engineering*, 1993, 19(1): 41–55. [doi:

10.1109/32.1987.10057]

86. Ribeiro FGC, Misra S, Soares MS. Application of an

extended SysML requirements diagram to model real-time

control systems. In: Proc. of the 13th Int’l Conf. on

Computational Science and Its Applications. Ho Chi Minh

City: Springer, 2013. 70–81. [doi: 10.1007/978-3-642-39646-

5_6]

87. Saiedian H, Kumarakulasingam P, Anan M. Scenario-

based requirements analysis techniques for real-time software

systems: A comparative evaluation. *Requirements

Engineering*, 2005, 10(1): 22–33. [doi: 10.1007/s00766-004-

0192-6]

88. Laouadi MA, Mokhati F, Seridi-Bouchelaghem H. A novel

formal specification approach for real time multi-agent system

functional requirements. In: Proc. of the 8th German Conf. on

Multiagent System Technologies. Leipzig: Springer, 2010. 15–

27. [doi: 10.1007/978-3-642-16178-0_4]

89. Siegl S, Hielscher KS, German R. Model based

requirements analysis and testing of automotive systems with

timed usage models. In: Proc. of the 18th IEEE Int’l

Requirements Engineering Conf. Sydney: IEEE, 2010. 345–

350. [doi: 10.1109/RE.2010.49]

90. Zhou JL, Lu Y, Lundqvist K, Lönn H, Karlsson D, Liwång

B. Towards feature-oriented requirements validation for

automotive systems. In: Proc. of the 22nd Int’l Requirements

Engineering Conf. Karlskrona: IEEE, 2014. 428–436. [doi:

10.1109/RE.2014.6912294]

91. Zhu XN. A formal model for service-based behavior

specification using stream-based I/O tables. In: Proc. of the

10th Int’l Workshop on Formal Aspects of Component

Software. Nanchang: Springer, 2014. 369–383. [doi:

10.1007/978-3-319-07602-7_22]

92. Sinha R, Patil S, Pang C, Vyatkin V, Dowdeswell B.

Requirements engineering of industrial automation systems:

Adapting the cesar requirements meta model for safety-critical

smart grid software. In: Proc. of the 41st Annual Conf. of the

IEEE Industrial Electronics Society. Yokohama: IEEE, 2015.

002172–002177. [doi: 10.1109/IECON.2015.7392423]

93. Li R, Ma SL, Yao WT. Ontology-based requirements

generation for credibility validation of safety-critical system.

In: Proc. of the 2015 Int’l Conf. on Computer and Information

Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive

Intelligence and Computing. Liverpool: IEEE, 2015. 849–854.

[doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.126]

94. Ribeiro FGC, Pereira CE, Rettberg A, Soares MS. Model-

based requirements specification of real-time systems with

UML, sysML and MARTE. *Software & Systems Modeling*,

2018, 17(1): 343–361. [doi: 10.1007/s00766-016-0255-1]

95. Westman J, Nyberg M. Providing tool support for

specifying safety-critical systems by enforcing syntactic

contract conditions. *Requirements Engineering*, 2019, 24(2):

231–256. [doi: 10.1007/s00766-017-0286-6]

96. Blouin D, Giese H. Combining requirements, use case

maps and AADL models for safety-critical systems design. In:

Proc. of the 42th Euromicro Conf. on Software Engineering

and Advanced Applications (SEAA). Limassol: IEEE, 2016.

266–274. [doi: 10.1109/SEAA.2016.15]

97. Fu RR, Bao XH, Zhao TD. Generic safety requirements

description templates for the embedded software. In: Proc. of

the 9th Int’l Conf. on Communication Software and Networks

(ICCSN). Guangzhou: IEEE, 2017. 1477–1481. [doi:

10.1109/ICCSN.2017.8230353]

98. Chen XH, Han L, Liu J, Sun HY. Using safety requirement

patterns to elicit requirements for railway interlocking systems.

In: Proc. of the 24th Int’l Requirements Engineering Conf.

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 80

Publisher: JISADS.com

Workshops (REW). Beijing: IEEE, 2016. 296–303. [doi:

10.1109/REW.2016.55]

99. Hu ZM, Huang LT, Zhao YX. Hybrid modeling language

for aerospace model software. *Aerospace Control and

Application*, 2021, 47(2): 25–31 (in Chinese with English

abstract). [doi: 10.3969/j.issn.1674-1579.2021.02.004]

100. Feyerabend K, Josko B. A visual formalism for real time

requirement specifications. In: Proc. of the 4th Int’l AMAST

Workshop on Aspects of Real-time Systems and Concurrent

and Distributed Software. Palma: Springer, 1997. 156–168.

[doi: 10.1007/3-540-63010-4_11]

101. Roop PS, Sowmya A. Hidden time model for specification

and verification of embedded systems. In: Proc. of the 10th

EUROMICRO Workshop on Real-time Systems. Berlin:

IEEE, 1998. 98–105. [doi: 10.1109/EMWRTS.1998.7066607]

102. Khan AM, Mallet F, Rashid M. Natural interpretation of

UML/MARTE diagrams for system requirements

specification. In: Proc. of the 11th IEEE Symp. on Industrial

Embedded Systems (SIES). Krakow: IEEE, 2016. 1–6. [doi:

10.1109/SIES.2016.7509429]

103. Kirner TG, Davis AM. Nonfunctional requirements of

real-time systems. *Advances in Computers*, 1996, 42: 1–37.

[doi: 10.1016/S0065-2458(08)60483-0]

104. Kirner TG, Davis AM. Requirements specification of real-

time systems: Temporal parameters and timing constraints.

Information and Software Technology, 1996, 38(12): 735–

741. [doi: 10.1016/0950-5849(96)00104-4]

105. Martins LEG, Gorschek T. Requirements engineering for

safety-critical systems: A systematic literature review.

Information and Software Technology, 2016, 75: 71–89.

[doi: 10.1016/j.infsof.2016.04.002]

106. Lee HK, Lee WJ, Chae HS, Kwon YR. Specification and

analysis of timing requirements for real-time systems in the

CBD approach. *Real-time Systems*, 2007, 36(1–2): 135–

158. [doi: 10.1007/s11241-007-9017-2]

107. Wu X, Liu C, Xia QX. Safety requirements modeling

based on RUCM. In: Proc. of the 2014 Computers,

Communications and IT Applications Conf. Beijing: IEEE,

2014. 217–222. [doi: 10.1109/ComComAp.2014.7017199]

108. Han L, Liu J, Zhou TL, Sun JF, Chen XH. Safety

requirements specification and verification for railway

interlocking systems. In: Proc. of the 40th Annual Computer

Software and Applications Conf. (COMPSAC). Atlanta: IEEE,

2016. 335–340. [doi: 10.1109/COMPSAC.2016.182]

109. Petters S, Muth A, Kolloch T, Hopfner T, Fischer F,

Farber G. The REAR framework for emulation and analysis of

embedded hard real-time systems. In: Proc. of the 10th IEEE

Int’l Workshop on Rapid System Prototyping. Clearwater:

IEEE, 1999. 100–107. [doi: 10.1109/IWRSP.1999.779038]

110. De Lemos R, Saeed A, Anderson T. Analysis of timeliness

requirements in safety-critical systems. In: Proc. of the 1992

Int’l Symp. on Formal Techniques in Real-time and Fault-

tolerant Systems. Berlin: Springer, 1992. 171–192. [doi:

10.5555/646842.706607]

111. Aoyama M, Yoshino A. AORE (aspect-oriented

requirements engineering) methodology for automotive

software product lines. In: Proc. of the 15th Asia-Pacific

Software Engineering Conf. Beijing: IEEE, 2008. 203–210.

[doi: 10.1109/APSEC.2008.59]

112. Frey HH, ed. Safety of Computer Control Systems 1992.

Amsterdam: Elsevier, 1992.

113. De Lemos R, Saeed A, Anderson T. A train set as a case

study for the requirements analysis of safety-critical systems.

The Computer Journal, 1992, 35(1): 30–40. [doi:

10.1093/comjnl/35.1.30]

114. Tjell S, Fernandes JM. Expressing environment

assumptions and real-time requirements for a distributed

embedded system with shared variables. In: Proc. of the 2008

IFIP Working Conf. on Distributed and Parallel Embedded

Systems. Milano: Springer, 2008. 79–88. [doi: 10.1007/978-0-

387-09661-2_8]

115. Martins LEG, de Oliveira T. A case study using a protocol

to derive safety functional requirements from fault tree

analysis. In: Proc. of the 22nd Int’l Requirements Engineering

Conf. (RE). Karlskrona: IEEE, 2014. 412–419. [doi:

10.1109/RE.2014.6912292]

116. Hansen KM, Ravn AP, Stavridou V. From safety analysis

to software requirements. *IEEE Trans. on Software

Engineering*, 1998, 24(7): 573–584. [doi:

10.1109/32.708570]

117. Markose S, Liu XQ, McMillin B. A systematic framework

for structured object-oriented security requirements analysis in

embedded systems. In: Proc. of the 2008 Int’l Conf. on

Embedded and Ubiquitous Computing. Shanghai: IEEE, 2008.

75–81. [doi: 10.1109/EUC.2008.92]

118. Roudier Y, Idrees MS, Apvrille L. Towards the model-

driven engineering of security requirements for embedded

systems. In: Proc. of the 3rd Int’l Workshop on Model-driven

Requirements Engineering (MoDRE). Rio de Janeiro: IEEE,

2013. 55–64. [doi: 10.1109/MoDRE.2013.6597264]

119. Saeed A, De Lemos R, Anderson T. A train set as a case

study for the requirements analysis of safety-critical systems.

In: Proc. of the 1992 Int’l Symp. on Formal Techniques in

Real-time and Fault-tolerant Systems. Berlin: Springer, 1992.

171–192. [doi: 10.5555/646842.706607]

120. Sun JF, Feng JC, Zhu JY, et al. A dimensional analysis

method for the requirements model of railway control software.

Chinese Journal of Computers, 2020, 43(11): 2152–2165 (in

Chinese with English abstract). [doi:

10.11897/SP.J.1016.2020.02152]

121. Zhou Y, Huang YH, Zheng HY, et al. A dimensional

analysis method for the requirements model of railway control

software. *Chinese Journal of Computers*, 2020, 43(11):

2152–2165 (in Chinese with English abstract). [doi:

10.11897/SP.J.1016.2020.02152]

122. Zhu JY, Huang YH., Zheng HY, et al. A dimensional

analysis method for the requirements model of railway control

software. *Chinese Journal of Computers*, 2020, 43(11):

2152–2165 (in Chinese with English abstract). [doi:

10.11897/SP.J.1016.2020.02152]

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81 81

Publisher: JISADS.com

123. Zhang WB, Xue L, Xu JM, et al. A dimensional analysis

method for the requirements model of railway control software.

Chinese Journal of Computers, 2020, 43(11): 2152–2165 (in

Chinese with English abstract). [doi:

10.11897/SP.J.1016.2020.02152]

124. Feng JC. Detailed requirement of embedded system

oriented formal modeling and analysis [Ph.D. Thesis].

Shanghai: East China Normal University, 2022 (in Chinese

with English abstract). [doi:

10.27149/d.cnki.ghdsu.2022.004041]

125. Darem, A., Alhashmi, A., Sheatah, H. K., Mohamed, I. B.,

Jabnoun, C., Allan, F. M., ... & Elmourssi, D. M. (2024).

DECODING THE DECEPTION: A COMPREHENSIVE

ANALYSIS OF CYBER SCAM VULNERABILITY

FACTORS. Journal of Intelligent Systems and Applied Data

Science, 2(1).

125. Wang S, Feng JC, Zhu JY, Huang YH., Zheng HY, Xu

XR, Miao WK, Zhang X, Pu GG. A dimensional analysis

method for the requirements model of railway control software.

Chinese Journal of Computers, 2020, 43(11): 2152–2165 (in

Chinese with English abstract). [doi:

10.11897/SP.J.1016.2020.02152]

126. Liu SY, Offutt J, Ho-Stuart C, Sun Y, Ohba M. SOFL: A

formal engineering methodology for industrial applications.

IEEE Trans. on Software Engineering, 1998, 24(1): 24–45.

[doi: 10.1109/32.663996]

127. Liu SY, Asuka M, Komaya K, Nakamura Y. An approach

to specifying and verifying safety-critical systems with

practical formal method SOFL. In: Proc. of the 4th IEEE Int’l

Conf. on Engineering of Complex Computer Systems.

Monterey: IEEE, 1998. 100–114. [doi:

10.1109/ICECCS.1998.706660]

128. Chen XH, Liu QQ, Mallet F, Li Q, Cai SB, Jin Z. Formally

verifying consistency of sequence diagrams for safety critical

systems. *Science of Computer Programming*, 2022, 216:

102777. [doi: 10.1016/j.scico.2022.102777]

129. Chen XH, Mallet F. Modeling timing requirements in

problem frames using CCSL. In: Proc. of the 18th Asia-Pacific

Software Engineering Conf. Ho Chi Minh City: IEEE, 2011.

381–388. [doi: 10.1109/APSEC.2011.30]

130. Vilela MA, Castro J, Martins LEG, Gorschek T.

Integration between requirements engineering and safety

analysis: A systematic literature review. *Journal of Systems

and Software*, 2017, 125: 68–92. [doi:

10.1016/j.jss.2016.11.031]

131. Medikonda BS, Panchumarthy SR. A framework for

software safety in safety-critical systems. *ACM SIGSOFT

Software Engineering Notes*, 2009, 34(2): 1–9. [doi:

10.1145/150786.150788]

132. Selić B, Gérard S. *Modeling and Analysis of Real-time

and Embedded Systems with UML and MARTE: Developing

Cyber-physical Systems*. Amsterdam: Elsevier, 2014. [doi:

10.1016/C2012-0-13536-5]

Ali, W. A., Mangini, A. M., Júlvez, J., Mahulea, C., & Fanti,

M. P. (2024). Toward Enhancing Security in Intelligent

Transportation: A Simulation-Based Approach. IFAC-

PapersOnLine, 58(4), 156-161.

134. Gu B, Yu B, Dong XG, Li XF, Zhong RM, Yang MF.

Intelligent program synthesis techniques: Literature review.

Ruan Jian Xue Bao/Journal of Software, 2021, 32(5): 1373–

1384 (in Chinese with English abstract).

http://www.jos.org.cn/1000-9825/6200.htm [doi:

10.13328/j.cnki.jos.006200]

135. Yang MF, Gu B, Duan ZH, Jin Z, Zhan NJ, Dong YW,

Tian C, Li G, Dong XG, Li XF. Intelligent program synthesis

framework and key scientific problems for embedded software.

Chinese Space Science and Technology, 2022, 42(4): 1–7 (in

Chinese with English abstract). [doi: 10.16708/j.cnki.1000-

758X.2022.0046

136. Tsai JJP, Liu AL. Experience on knowledge-based

software engineering: A logic-based requirements language

and its industrial applications. *Journal of Systems and

Software*, 2009, 82(10): 1578–1587. [doi:

10.1016/j.jss.2009.03.019]

137. ÇAM, A. S., & YILDIZ, F. (2023). Privacy Threats

Unveiled: A Comprehensive Analysis of Membership

Inference Attacks on Machine Learning Models and Defense

Strategies. Journal of Intelligent Systems and Applied Data

Science, 1(2).

138. Wang S, Feng JC, Zhu JY, Huang YH., Zheng HY, Xu

XR, Miao WK, Zhang X, Pu GG. A dimensional analysis

method for the requirements model of railway control software.

Chinese Journal of Computers, 2020, 43(11): 2152–2165 (in

Chinese with English abstract). [doi:

10.11897/SP.J.1016.2020.02152]

