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ABSTRACT 

With the widespread application of embedded systems, their requirements are becoming increasingly complex, 

and requirements analysis has become a key stage in the development of embedded systems. How to accurately 

model and describe requirements has become the primary issue. This paper systematically investigates the 

requirements description of embedded systems and conducts a comprehensive comparative analysis in order to 

gain a deeper understanding of the core concerns of embedded system requirements. First, a systematic literature 

review method is adopted to identify, screen, summarize, and analyze the relevant literature published between 

January 1979 and November 2023. Through automatic retrieval and snowballing, 150 papers closely related to 

the topic were selected to ensure the comprehensiveness of the literature review. Secondly, from the aspects of 

requirements description focus, requirements description dimension, and requirements analysis elements, the 

expressive ability of existing embedded requirements description languages is analyzed. Finally, the challenges 

faced by the current software requirements description of embedded systems are summarized, and the 

requirements for the expressive ability of the requirements description method for embedded systems are put 

forward for the task of intelligent synthesis of embedded software.  

Keywords: embedded system, requirements description language, requirements analysis, Classification. 

1. INTRODUCTION 

 Embedded systems have penetrated all aspects 

of human life and are widely used in various fields such 

as automotive electronics, aerospace, rail transit, medical 

equipment, and personal mobile devices [1]. The 

accompanying increase in demand complexity is a result 

of this. Each embedded system integrates a large number 

of functional requirements and non-functional 

requirements such as real-time, safety, and reliability. 

For example, a high-end car has more than 2,000 

software-based functions [2]; and an aviation embedded 

system has as many as 139 functions [3]. In addition, the 

complexity of embedded system requirements is also 

reflected in the sharp increase in the number of 

connected devices. According to Mumtaz et al. in the 

literature [4], the number of wireless access devices in 

the fields of future transportation, smart cities, and 

factories will reach the level of tens of billions. 

For the development of complex software systems, the 

requirements stage is the most error-prone and costly 

stage, especially for embedded software systems [5, 6]. 

Broy et al. found that more than 50% of the errors in the 

embedded field occurred at the time of system delivery 

and were related to the wrong understanding of the 

requirements [7]. Naumchev et al. pointed out that the 

requirements problems that lead to software disasters can 

be divided into two categories: one is the wrong 

understanding, updating, and implementation of the 

requirements, and the other is that the requirements are 

incomplete, inconsistent, and do not meet the user’s 

needs [8]. Accurately describing the requirements has 
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become a key task in the development of embedded 

systems [9, 10]. 

Compared with traditional information system software, 

embedded system requirements have their particularity. 

First, the embedded system is composed of software and 

hardware. Its software interacts directly with the physical 

world through various sensing devices and acting 

devices, and runs on a hardware platform with limited 

resources according to the system control logic. 

Therefore, its requirements not only include software 

and hardware behavior, but also cover constraints on 

performance, accuracy, reliability, etc., some of which 

are mandatory requirements. This requires us to 

accurately capture and express these constraints in the 

requirements description. Secondly, the development of 

embedded systems begins with the task intention. The 

requirements analysis gradually refines the task intention 

from system-level requirements to software and 

hardware-related requirements. The requirements 

analysis needs to clearly decouple the intertwined 

requirements into relatively simple operations. The 

relationship between different levels of requirements has 

become an important part of requirements analysis. How 

to express the requirements of various levels has become 

the primary issue. 

Since the 1970s, researchers have begun to pay attention 

to the problem of embedded system requirements 

description and have proposed a series of requirements 

description languages, designing their language 

expression capabilities from different perspectives. In 

the 1980s, Davis et al. [6] and Melhart et al. [7] 

respectively reviewed the mainstream embedded 

requirements description languages at that time and 

explained the background, characteristics, and 

applications of these languages. However, their writing 

age is relatively long, the languages covered are few, and 

the computer and embedded technology at that time were 

far from mature and developed as they are today, and the 

connected devices were also few. 

With the increasing complexity of embedded systems, 

their requirements are not only intricate, but also 

scattered in different stages of software and hardware 

development. Therefore, many new embedded system 

requirements description methods have appeared. 

Through a comprehensive investigation, comparison, 

and analysis of these existing works, this paper hopes to 

deeply understand the core concerns of embedded 

system requirements, as well as the capabilities of 

existing embedded requirements description languages, 

clarify the intertwining of embedded system 

requirements caused by device sharing, refine the key 

components of requirements description, and lay a 

foundation for proposing a requirements description and 

requirements analysis that has a certain degree of 

universality and can capture decentralized requirements. 

This paper adopts the systematic literature review 

method to search and screen the relevant literature 

published from January 1979 to November 2023 and 

finally selected 150 papers from 3,442 documents as the 

research object. Due to the differences in research 

objects and terminology in various documents, and 

considering that the requirements involved in embedded 

systems are closely related to their system structure, in 

order to uniformly express the meaning of various types 

and levels of requirements and facilitate comparative 

analysis, before starting the investigation, we first gave 

a reference structure of a general embedded system as 

the basis for the investigation and analysis. 

Next, from the aspects of requirements modeling focus, 

requirements description dimension, and requirements 

analysis elements, the expressive ability of existing 

embedded requirements description languages is 

analyzed. Finally, the challenges faced by the current 

software requirements description of embedded systems 

are discussed, and for the research hotspot the intelligent 

synthesis task of embedded systems the requirements for 

the expressive ability of its embedded system 

requirements description language are proposed 

2. EMBEDDED SYSTEM REFERENCE 

STRUCTURE 

 In order to review the requirements description 

of embedded systems from a unified perspective, we 

give the reference structure of the embedded system, as 

shown in Figure 1. Among them, the embedded system 

is regarded as a computing software and hardware 

complex with specific functions. The software serves as 

a controller that coordinates system equipment to 

complete the design intent of the embedded system. The 

hardware equipment mainly includes various sensors, 

actuators, and other equipment that the system can 

manage and schedule. The controller communicates with 

the external environment through the system equipment. 

These external environments include super 

administrators, external software systems, natural 

environments, physical environments, etc. 

Complex embedded systems usually have multiple 

software controllers. We distinguish between a system 

controller and a set of subsystem controllers. Among
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Figure1. Embedded system architecture

them, the system controller can receive external control 

instructions from the super administrator, monitor the 

status of each subsystem controller, and control and 

coordinate the subsystem controllers. The subsystem 

controller is responsible for coordinating the 

corresponding sensors and controllers, obtaining 

external environment information, and implementing 

control operations. The sensor can obtain the attributes 

of the external environment. In addition to being 

regarded as an external device, it is also regarded as a 

system interface. The actuator can apply the software 

controller instructions to the external environment. 

For the expectations and requirements of different 

components in the above embedded system reference 

structure, different types of requirements descriptions 

will be obtained. These types include system task intent, 

system capability requirements, software capability 

requirements, hardware requirements, and software 

design constraints. 

Among them, the system task intent expresses the goal 

of the system. Since the embedded system will act on the 

external environment, following the requirements 

engineering concept based on environmental modeling 

[8], the system task intent is usually reflected in the 

response to the expected changes in the external 

environment. For example, in the aerospace field, the 

task intent of the sun search control system is to perceive  

the position of the sun in the natural environment and the 

current satellite’s body angle in the physical 

environment and adjust its own body angle to achieve 

sun-tracking cruise. In this example, both the sun and the 

star constitute the external environment. 

System capability requirements describe the capabilities 

that the system must have. These capabilities are the 

specific conditions or requirements that must be met to 

achieve the system’s task intent. Specifically, since the 

embedded system will interact with the external 

environment through the system equipment, its 

capabilities are based on the input and output 

relationship between the embedded system and the 

external environment, that is, the input and output of the 

system equipment and the external environment. For 

example, in the sun search control system, the system 

measures the satellite’s speed and angle through sensors 

such as gyroscopes and sun sensors and perceives sun 

visibility information. 

Software capability requirements refer to the capabilities 

that the software needs to have to schedule, manage, and 

control system equipment in order to meet the system 

capability requirements. It is often expressed in the input, 

output, and their relationship between the embedded 

software controller and the system equipment, also 

known as embedded software requirements, including 

various functional and non-functional requirements. For 

example, the sun search control software needs to send 

power control instructions and data communication 
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instructions to devices such as gyroscopes and sun 

sensors and receive and process measurement data. 

These are all functional requirements; the period interval 

for the sun search control software to write control 

commands to the thruster must be less than 120 ms, etc., 

which belongs to non-functional requirements. 

Hardware requirements are constraints on embedded 

hardware devices, which can be divided into system 

equipment requirements and software operating platform 

requirements. System equipment requirements mainly 

involve various sensors and actuators, such as the sensor 

gyroscope can measure the angular velocity of the 

satellite, each data acquisition of the sensor must be 

completed within 90 ms, the restart time of the actuator 

cannot exceed 500 ms, etc.; the software operating 

platform requirements refer to the requirements for the 

hardware platform that supports the operation of the 

embedded system software, such as the memory capacity 

is not less than 128 MB, the storage space is not less than 

1 GB, and the processor must process 5 million 

instructions per second. 

The above five different types of requirements 

descriptions are actually the products of different 

requirements development stages. The usual 

requirements development process is as follows: first, 

through system goal analysis, study the expected 

changes in the external environment, and obtain the 

system’s task intent. Then, through system capability 

analysis, the task intent is specified as the input and 

output relationship between the system and the external 

environment, and the system capability requirements are 

derived. Next, software and hardware partitioning is 

performed. Through the analysis of the interaction 

between the software and external devices and the 

requirements for external devices and platforms, the 

software capability requirements and hardware 

capability requirements are obtained. Finally, the 

software design constraints can be obtained for the 

preliminary design stage of the software. The software 

requirements specification of the embedded system is a 

process of continuous deduction from the expectation of 

the external environment to the behavior of the software 

controller, which involves the refinement, 

decomposition, deduction, and evolution of different 

types of requirements. 

3. LITERATURE REVIEW METHOD 

3.1 Research Questions 

 The purpose of this paper is to deeply 

understand the core concerns of embedded system 

requirements and the capabilities of requirements 

description languages. For this purpose, two research 

questions were designed: 

- RQ1: What are the types of requirements involved in 

the common description of embedded systems? 

- RQ2: What are the capabilities of existing embedded 

system requirements description languages? 

3.2 Literature Collection 

 This section describes the data collection 

process in the systematic literature review, including 

literature retrieval, literature screening, and snowballing. 

The three authors of this paper finally selected 150 

papers from 3,442 documents as the research collection 

after automatic and manual retrieval and snowballing. 

(1) Literature Retrieval 

We first considered keywords related to requirements 

engineering, embedded systems, embedded software, 

and requirements description. In the search, we found 

that process control systems and real-time systems are 

also many embedded systems, so we added related 

keywords. The final Chinese keywords for literature 

retrieval were “(embedded system software + embedded 

system + embedded software + process control system + 

real-time control system) * (requirements description + 

requirements specification + requirements specification 

+ requirements modeling + system description + system 

specification + system specification + system modeling 

+ requirements standard + requirements format + 

requirements document)”, and the English keywords 

were “(“embedded system software” OR “embedded 

system” OR “embedded software” OR “process control 

system” OR “real time control system”) AND 

(“requirements description” OR “requirements 

specification” OR “requirements modeling” OR “system 

description” OR “system specification” OR “system 

modeling” OR “requirements standard” OR 

“requirements format” OR “requirements 

documentation”)”. 

The literature databases used for retrieval include Web 

of Science, IEEE Xplore, ACM Digital Library, Science 

Direct, Springer, Engineering Village, and CNKI. A total 

of 3,442 documents were obtained by searching in the 

above literature databases. Among them, Springer had 

the most documents, with 2,443, and CNKI had the 

fewest, with 13. The specific search results are shown in 

Figure 2. Due to the large data gap, we used a non-

proportional vertical coordinate for display. 
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Figure 2. Database Search Results by Publisher 

(2) Literature Screening 

We screened the retrieved literature. The inclusion and 

exclusion criteria for the literature are as follows. Note 

that literature that meets any of the inclusion criteria is 

included, and literature that meets any of the exclusion 

criteria is excluded. The literature inclusion criteria (IC) 

are as follows: 

- IC1: The literature involves the requirements 

description related to embedded systems. At this stage, 

our goal is to maximize the scope of the literature to 

ensure the integrity of the research. 

- IC2: The literature successfully applies the general 

requirements description and specification language, 

method, and process to real cases of embedded systems. 

The literature exclusion criteria (EC) are as follows: 

- EC1: Literature for which the full text of the electronic 

version cannot be obtained. 

- EC2: Literature written in languages other than English 

and Chinese. 

- EC3: Literature that has not been peer-reviewed. 

- EC4: There is more complete literature, that is, there 

are multiple documents for the same research, and only 

the most complete literature is included. 

The specific screening process is as follows. First, the 

title, keywords, and abstract of the literature are screened 

to determine which literature meets the 

inclusion/exclusion criteria, and then the full text is read 

for screening. When assigning tasks, we ensure that each 

selection stage of each document is completed by at least 

two authors. Controversial documents must first be 

evaluated by three authors, and then a consensus is 

reached through discussion. After screening according to 

the above criteria, 106 documents were obtained. Then, 

the snowball method was used to screen and summarize 

the references of these documents, and finally 150 

documents were selected. 

 

4. TYPES OF EMBEDDED SYSTEM 

REQUIREMENTS DESCRIPTION 
 

Table 1 summarizes the types of embedded system 

requirements involved in the searched literature, 

including system task intent, system capability 

requirements layer, software capability requirements, 

hardware requirements, and software design constraints, 

which involve various different levels. Among them, the 

description level of system task intent and system 

capability requirements is relatively high, but there is 

less existing work. Most of the work focuses on the 

description of software capability requirements, which is 

an indispensable basic component of embedded software 

requirements specification. Both functional and non-

functional requirements are important in software 

capability requirements. There are few research works 

describing hardware requirements, and there are also 

many research works involving software design 

constraints. 

Table 1: Requirement Types in Embedded Systems 

Requirement Type References 

System Task Intent [10-13] 

System Capability [10,11,14-20] 

Software Capability [2,5,10-12,14-18,21-97] 

Non-Functional 
[2,5,10,11,14-18,20-30,32,34-
41,43,56,63,64,66-70,72-78,82-84,87,95,98-
122] 

Hardware [13,14,16,19,20] 

Software Platform 
Constraints [18,22,84] 

Software Design 
Constraints 

[11,16,21,23,24,33,40,53,60,83,84,97,123-
138] 

It should be noted that there is a close relationship 

between these different types of requirements. From the 

perspective of implementation, system capability 

requirements must meet system task intent, and software 

capability requirements and hardware requirements must 

meet system capability requirements. Because of this 

relationship, many works involve multiple levels of 

requirements description. For example, the SCR 
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(software cost reduction) method [14–16] and the 

ECSAM (embedded computer system analysis and 

modeling) method [11] both include descriptions of two 

levels: system capability requirements and software 

capability requirements; SDL (specification description 

language) [22], SOFL (structured-object-based-formal 

language) [23, 126, 127], and Hume [40] all contain 

descriptions of software capability requirements and 

software design constraints; the research of Pereira et al. 

involves system capability requirements, software 

capability requirements, and hardware requirements 

[19]. However, no research has yet involved the 

refinement process from system task intent to low-level 

requirements. 

Next, we will explain the existing expression forms of 

these requirement types separately. 

4.1 System Task Intent and System Capability 

Requirements 

System task intent describes the high-level goals that the 

system task is to achieve. For example, Leveson et al. 

described the task intent of an aircraft collision 

avoidance system as “eliminating the danger of aircraft 

being too close to each other” or “minimizing the 

number of situations in which aircraft are too close to 

each other” [10]. The aircraft here is the external 

environment. Pereira et al. defined intent as a set of 

system goals defined by stakeholders [19], such as 

“serving more passengers.” Similarly, Ponsard et al. [12] 

and Braun et al. [13] also use goal models to express 

intent. 

System capability requirements are descriptions of the 

system’s functions [20]. Since embedded systems 

include software and hardware, and the software needs 

to perceive information from the external environment 

through devices such as sensors and exert control over 

the external environment through devices such as 

actuators, the system capability requirements are often 

expressed as the interaction between the system 

equipment and the external environment or the 

relationship between the input and output from the 

external environment. For example, in the SCR method, 

the system capability requirements are expressed as the 

relationship between the monitored variables and the 

controlled variables of the external environment. Among 

them, the monitored variable is the input perceived by 

the system through the sensor, and the controlled 

variable is the output controlled by the system through 

the actuator. This relationship can be described by a 

mathematical formula. Leveson et al. defined the 

controllable part of the external environment as a 

process, and expressed the system requirements as the 

relationship or function between the input of the external 

environment and the output of the system [10]. Wang Fei 

et al. have a similar description [18]. Zave et al. [32] and 

Lavi et al. [11] expressed the system requirements as the 

interaction between the equipment and the external 

interactive environment. Lavi et al. expressed the system 

requirements as a task sequence of the system [11], for 

example, “when there is an intruder in the protected area, 

the alarm sounds.” 

4.2 Software Capability Requirements 

Software capability requirements include the functional 

and non-functional requirements of the software. 

Generally speaking, software functional requirements 

describe the relationship between the input and output of 

the software. Embedded software interacts with the 

external environment through sensors and actuators, and 

its input and output are obtained through sensors and 

actuators. Many studies have focused on the relationship 

between input events and output events. For example, 

some studies use state machines to express the 

relationship between input and output events [10, 11, 22, 

25–27, 29, 30]. In EBS (event-based specification 

language) [33], this relationship is expressed through an 

event relationship description language [33], while in 

RSL (requirements statement language) [21], the 

relationship between input and output events is 

expressed through a stimulus-response path [21]. Other 

studies focus on the relationship between input data and 

output data. For example, the research of PAISLey 

(process-oriented applicative and interpretable 

specification language) [32], ESML (extended system 

modeling language) [31], SOFL, etc., all involve the 

conversion of input and output data. In ASLAN [36], the 

properties and constraints that the input and output 

variables must satisfy, and in SCR and SPARDL 

(spacecraft requirement description language) [41], the 

calculation relationship or functional relationship 

between the input and output variables are discussed. 

There are many non-functional requirements for 

embedded software, mainly including time-related 

requirements, reliability, robustness, personal safety, and 

information security. Time-related requirements are the 

most common [10, 14, 21, 22, 25, 26, 32, 34, 37, 38, 40, 

111,137]. They have many names, such as time 

requirements, real-time requirements, time constraints, 

performance, etc. According to the strictness of the time 

requirements, time-related requirements can be divided 

into three categories. 
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The first category is the requirement for time series 

[128]. The second category is the quantitative 

requirement for time periods and moments [32], which 

can be expressed by maximum response time (response 

time cannot exceed a certain value), minimum response 

time (response time cannot be less than a certain value), 

average response time, fixed value, etc. The third 

category is the requirement for real-time performance. 

For example, some constraints in RTRSM* (real-time 

requirements specification model*) [29], RT-FRORL 

(real-time frame and rule oriented requirements 

language) [35], RTASLAN [37], etc. can be violated, 

which belongs to soft real-time. Some are hard 

requirements that must be implemented, which belongs 

to hard real-time. 

Personal safety requirements and information security 

requirements are also very important. Personal safety 

requirements refer to measures to prevent the system 

from harming personal safety or property safety [76, 98, 

104, 106, 108, 109, 112, 114, 116, 117]. They are 

generally expressed by what the system is not allowed to 

do [129], describing system-specific statements about 

the existence of safety elements, and are combined with 

the minimum or maximum required thresholds of some 

quality measurement standards [130]. Some works also 

specify the degree of safety that the system must be in. 

For example, Medikonda et al. further divided personal 

safety requirements into three types: important safety 

requirements, pure safety requirements, and safety 

constraints [131]. Information security requirements [20, 

118, 119, 122, 133,136,125] consider the attacks that the 

software system may face, such as leaking personal data 

or allowing attackers to gain unauthorized control of the 

vehicle, and introduce countermeasures that should be 

taken to deal with various threats of destroying or 

stealing system information and data. 

In addition, other common non-functional requirements 

include reliability and robustness. Reliability refers to 

the ability or probability of the system to complete a 

specific function. For example, PAISLey uses 

probability to measure reliability. It divides the value 

range of a function into two parts: success and failure, 

and uses a random variable, related distribution 

information, or a fixed value to represent the probability 

of the two. Robustness usually refers to the ability of the 

system to operate normally in the face of illegal or 

incorrect input and unexpected environmental changes. 

Embedded systems usually need to provide response 

strategies for abnormal events (such as resource failure, 

incorrect input, etc.) [10, 14, 40, 78] to ensure the stable 

operation of the system. 

4.3 Hardware Requirements and Software Design 

Constraints 

Hardware refers to the physical equipment used to 

process, store, and transmit computer programs or data 

[19]. Hardware includes external devices such as sensors 

and actuators, and also includes the operating platform 

of the software. Since peripherals and software operating 

platforms have different requirements, hardware 

requirements are divided into requirements for 

peripherals and constraints on software operating 

platforms. 

Peripheral requirements should provide requirements for 

the characteristics of peripherals [14, 16], and often 

include the functions of peripherals, user interaction, 

hardware characteristics (temperature range, humidity 

range, battery), action buttons, accuracy, memory 

specifications, response time, etc. [20]. Constraints on 

the software operating platform are the requirements for 

the operating platform such as the processor, memory, 

and data storage space during functional design. They 

are all limited resources in embedded systems, so they 

must be described. Many works have clearly expressed 

them. For example, Hume proposed a space overhead 

model to predict the upper limit of the stack and space 

usage of the program; MARTE (modeling and analysis 

of real-time and embedded systems) [132] contains 

many resource-related template attributes to express 

resource constraints. 

Software design constraints generally include interface 

requirements for hardware devices, software structure, 

programming language, development standard 

requirements, confidentiality requirements, 

maintainability, usability, etc. [84]. Interface 

requirements elaborate on the requirements of each 

function at the interface level, which is often used to 

describe the input and output of hardware interfaces. 

Generally speaking, interface requirements will also 

include attributes such as accuracy, range, and time 

requirements. Here, accuracy refers to the accuracy of 

the system’s output data, that is, it describes the 

acceptable error between the output data value and the 

ideal value [14]. In existing research work, the design of 

the internal structure of software has been studied in 

depth. For example, SDL uses structured concepts such 

as blocks and processes to describe the designed internal 

structure of the system. The SYSREM method [21] 

assigns the sub-functions after functional decomposition 

to each system component, and at the same time 

completes the design of the component interfaces. In 

addition, the SYSREM method also proposes a 



Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.1, (2025) PP. 61- 81                       68 

 

 
Publisher: JISADS.com 

distributed computing design system (DCDS) and details 

the design process of the modules. 

5. EXISTING EMBEDDED SYSTEM 

REQUIREMENTS DESCRIPTION LANGUAGES 

After in-depth investigation, we have summarized 20 

representative requirements description languages, as 

shown in Table 2. These languages only cover three 

types of requirements description: system capability 

requirements, software capability requirements, and 

software design constraints. Among them, system 

capability requirements are the highest level of 

description. Most of the work focuses on the description 

of software capability requirements. In contrast, there are 

relatively few descriptions involving software design 

constraints. 

There is only SCR for system capability requirements, 

and only SDL for software design constraints. It is worth 

noting that both languages are involved at the software 

capability level. However, at different requirement 

levels, their focus is different. At the system capability 

requirement level, SCR mainly focuses on the 

measurable environmental attributes that affect the 

behavior of the system itself and the environmental 

attributes that the system can control. Among them, the 

measurable environmental attributes are called 

monitored variables, and the environmental attributes 

controlled by the system are controlled variables. The 

system capability requirements are expressed as the 

relationship between these environmental attributes or 

variables, and the system must ensure the realizability of 

these relationships. At the same time, SCR also describes 

the accuracy in measuring monitored variables and 

calculating controlled variables. In order to achieve 

acceptable system behavior, the input and output devices 

must measure the monitored attributes and set the 

controlled attributes with sufficiently high accuracy and 

sufficiently small time delay. 

In the description of software design constraints, the 

SDL description language focuses on the organization 

and design of the internal structure or modules of the 

system. For example, SDL uses the concept of blocks to 

describe the system structure. Blocks are hierarchical 

and can be continuously decomposed or nested, and also 

contain various sub-structural concepts to describe 

complex structures. 

Next, this section will elaborate on the most expressive 

software capability description languages from four 

dimensions: description focus, description dimension,  

Table 2: Requirement Description Languages for Embedded Systems 

Type 
Description 

Language 
Description Focus Description Dimension 

Requirement 

Analysis 

Elements 

Non-Functional 

Aspects 

System 

Capability 

SCR [14,16] 

Environmental attributes 

affecting system behavior 

and control 

Relationship between 

monitored/controlled 

variables 

— Accuracy, Timing 

Statecharts [20], 

Modechart [27], 

RTRSM [28], 

Stateflow [29] 

Input/output sequences, 

conditions, actions, timing 

constraints 

Superstates, AND/XOR 

decomposition 
Timing — 

SDL [22] 
External events/signals 

requiring system response 

Mapping inputs/current 

state to outputs/updated 

state 

Hierarchical 

representation 
Timing 

RTRL [23] 
Correspondence between 

input/output events 

System decomposition into 

independent modules 
Timing — 

EBS [33] 

Events/messages at 

interfaces and their 

relationships 

— Timing — 

SCR [14-16] 

Real-world attributes 

monitored by inputs and 

controlled by outputs 

Output-input relationships 

across modes 

Mode-based 

state 

organization 

Timing, Performance, 

Exception handling 

PAISLey [32] 

Physical objects, humans, 

and digital systems 

controlled by the system 

State transitions between 

asynchronous processes 
Hierarchical Performance, Reliability 
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Type 
Description 

Language 
Description Focus Description Dimension 

Requirement 

Analysis 

Elements 

Non-Functional 

Aspects 

Software 

Capability 

FRORL/RT-FRORL 

[34,35,33] 

Interactions between real-

world objects and their 

constraints 

Rules modifying object 

interactions 

Activity 

decomposition, 

refinement 

Real-time 

RSML [10] 
Controllable variables in 

real-world processes 
Input/output sequences 

Superstates, 

AND 

decomposition 

Accuracy, Timing, 

Exception handling, 

Interfaces 

SPARDL [41], Giotto 

[39] 

Response timing of 

controlled devices 

Mode transitions and 

periodic tasks 

Multi-task 

modes, 

superstates 

Timing 

ASLAN/RT-ASLAN 

[36,37], ASTRAL 

[38] 

Events triggering system 

state changes 
State transition sets 

Multi-level 

refinement 
Real-time 

RSL [31] 

External environment 

information for system 

processing 

Input/output data 

processing 

Functional 

decomposition 

Performance, Accuracy, 

Timing, Exception 

handling 

Hume [40] 

Shared resources and 

communication channels 

with environment 

Communication 

events/resource 

consumption sequences 

Composite 

resource/event 

decomposition 

Real-time, Resource 

constraints, Exception 

handling 

Software 

Design 

Constraints 

SDL [22] 
Internal system structure 

design 
— — — 

requirements analysis elements, and non-functional 

requirements. 

5.1 Description Focus 

The description focus is the language’s perspective on 

the world, and it is closely related to how the language 

views the role of its own system. Different languages 

have different description focuses. Some languages view 

their own systems as responsive systems, and their own 

systems respond to events, signals, or stimuli from the 

external environment. Therefore, their focus is on the 

events, signals, or stimuli issued by the external 

environment. For example, Statecharts [26] continuously 

responds to stimuli through event-driven. Similarly, 

Stateflow [30] also describes how software reacts to 

signals, events, and time-based conditions. Other similar 

languages include Modechart [27], RTRSM, SDL, 

RTRL (real-time requirements language) [25], and EBS. 

Some languages believe that software will observe and 

change the world. For example, SCR focuses on the real-

world attributes monitored by input devices, such as 

barometric altitude, ground altitude measured by radar, 

etc., and the real-world attributes controlled by output 

devices, such as the coordinates of the flight path 

markers on the head-up display, radar antenna steering 

commands, and turn signals. Similarly, PAISLey focuses 

on modeling distributed and continuous (through 

discrete simulation) phenomena in a computer system 

environment. Its environment model can include 

input/output devices, physical objects controlled by its 

own system, communication links with humans and 

other digital systems, and so on. FRORL (frame-and-rule 

oriented requirements language) [34] and RT-FRORL 

focus on the interaction between real-world objects, the 

objects in the real application domain, their possible 

changes, constraints, and assumptions about this world. 

RSML (requirements state machine language) [10] is for 

process control systems and focuses on the variables that 

can be manipulated and controlled in the process to be 

controlled. SPARDL and Giotto [39] focus on the 

response and response time of the controlled device. 

The other focuses are summarized as follows. For 

example, ASLAN and RTASLAN and ASTRAL 

(ASLAN based TRIO assertion language) [38] view 

their own systems as being in a set of states, and they 

focus on events that can cause state transitions in their 

own systems. RSL and Hume believe that their own 

systems are for processing data, so they focus on the 

external environment messages to be processed in the 

system. GCSR (graphical communicating shared 

resources) [78] views a real-time system as a set of 
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communication components that execute on a limited set 

of serial shared resources and synchronize with the 

components through communication channels. It focuses 

on the resources shared with the external environment 

and their communication channels. 

In short, from the current description focus, only 

focusing on the changes in the state of the system itself 

or only viewing itself as a responder to external stimuli 

will make it difficult to solve the problems that come 

with the increasing scale of embedded systems. As the 

number of devices increases, the external stimulus events 

and system state data will also increase, which will make 

it difficult for users to understand and accurately express 

their needs. The view that software will observe and 

transform the world will be strengthened. They can 

effectively limit the user’s needs to the scheduling and 

control of these external worlds, and define the software 

itself by transforming the external world, so that users 

can clearly express their actual needs. 

5.2 Description Dimension 

Due to different description focuses, the description 

dimensions of languages will also be different. Many 

languages describe software requirements from the 

reaction to signals, events, and time conditions. They 

often use state machines or state transition diagrams as a 

basis for representation. For example, Statecharts 

regards software behavior as a collection of elements 

such as input and output, conditions, actions, and time 

constraints. It extends the ordinary state transition 

diagram and introduces hierarchical and concurrent 

states to express requirements. Similar ones include 

RTRSM and Stateflow. The only difference is that 

Stateflow uses the state machine representation method 

of Statecharts and flowcharts for description, and also 

provides state transition tables and truth tables. 

Modechart regards software behavior as a sequence of 

specific actions that may be executed in a certain mode. 

It pays more attention to the time constraints related to 

the start and completion of actions. Similar expression 

content also includes SDL. SDL does not use the 

common form of state transition diagrams, but uses a 

syntax form that emphasizes the reception and sending 

of messages, but the meaning of the final description 

result is still the same as that of the state transition 

diagram. 

Some languages describe the sequence of input and 

output, although their specific expression forms may be 

slightly different. For example, EBS regards software 

behavior as events or messages that occur on the 

interface and their interrelationships. It defines three 

event relationships: time sequence, concurrency, and 

enabling relationship, and uses the symbols of these 

three event relationships and first-order predicate logic 

to describe the behavior of the software. RTRL regards 

software behavior as the correspondence between input 

events and output events, where the output is not only 

related to the set of input signals, but also to the arrival 

order of these inputs. RSML uses a black-box method to 

describe the behavior of the controller, which also 

describes the input and output sequence of the controller. 

As the state of the controlled process changes, its 

behavior will also change accordingly. The 

representation method used is a hierarchical and 

concurrent state machine. Methods belonging to this 

category also include SCR and PAISLey. 

SCR regards software as a set of functions associated 

with output data items, and each output data item is 

assigned a value by a function. These input data items 

and output data items both represent the interaction 

events with sensors and actuators. It uses tables to 

represent the relationship between modes, states, and 

outputs. The basic description unit of PAISLey is a 

function, which includes a state space and a successor 

function that defines the successor state for each state. 

The asynchronous interaction process between functions 

is defined by an exchange function. It uses a hierarchical 

data flow diagram and an embedded control state 

machine to represent function calls. 

Some languages view software behavior as a set of rules 

that change the interaction of real-world objects, such as 

FRORL and RT-FRORL. Their descriptions mainly 

include objects and activities. Objects have some 

attributes, and activities have participating objects, 

preconditions, action sequences, alternative processes, 

etc. Actions can be other activities or assertions. Both 

activities and assertions are represented using first-order 

predicate logic. 

 

Some languages view software behavior as a set of 

modes that transition and periodically driven computing 

tasks. For example, SPARDL uses modes and mode 

transitions to organize tasks, and the mode also contains 

a set of computing modules expressed by a control flow 

diagram. SPARDL uses the expression form of a state 

transition diagram, and the modes allow nesting, which 

is similar to the hierarchical state of Statecharts. 

Similarly, there is also Giotto, but Giotto does not care 
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about the specific implementation of the task, but only 

represents the external interaction of the task. 

Some languages view software behavior as a set of 

transitions that can change the state of their own system. 

For example, ASLAN and RTASLAN. They use states 

and state transitions to organize the description of 

software behavior. The state here refers to the value of 

the state variable at a certain moment in the software or 

its own system. This state is not suitable for 

representation by a state transition diagram. RT-ASLAN 

uses assertions and invariants based on first-order 

predicate logic to describe the state. ASTRAL retains the 

same representation as in ASLAN and RT-ASLAN, and 

its semantics are defined in TRIO logic. 

There are also descriptions such as GCSR that view their 

own system as a set of communication processes that 

share limited resources. The behavior of the software 

consists of a set of execution step sequences, where each 

execution step represents a communication event or a 

time and resource consumption action. It uses graphics 

to represent these symbols, and its process defines 

communication events, events or resource consumption 

actions, and the relationship between them. Its semantics 

are defined as a labeled transition system or converted to 

the process algebra ACSR. 

The main dimensions of software requirements 

description include behavior and data. Most languages 

focus more on the description of behavior, mainly 

focusing on its action behavior flow, and describing the 

reaction to signals, events, and event conditions. These 

languages usually use finite state machines, state 

transition diagrams, predicate logic, and other means for 

description. Some methods will use hierarchical 

concurrent state machines (mode transition diagrams) to 

describe complex behaviors. However, there are also a 

few languages, such as RSL and Hume, that focus more 

on data conversion. These languages focus on processing 

the external environment information within the system, 

use the input data and output data processing process to 

describe the function, and may consider using a 

hierarchical structure to represent complex functions. 

There are also some works, such as SPARDL, that focus 

on both behavior and data. They have both mode 

diagrams and computing tasks. For complex embedded 

systems, both their behavior and data are complex. 

Therefore, in their software requirements description, it 

is necessary to organically combine the models of these 

two dimensions. 

5.3 Requirements Analysis Elements 

After investigation, we found that in different 

requirements description languages, there are their own 

unique description elements to facilitate requirements 

analysis at different levels. As shown in Table 2, most 

languages can support the expression of requirements at 

different granularity levels. Only EBS, which only relies 

on events and the relationship between events for 

description, has no top-down analysis method. 

In requirements analysis, there are mainly the following 

forms of analysis elements. Many languages have 

proposed the concept of a superstate to represent states 

hierarchically. For example, Statecharts not only 

proposes a superstate, but also proposes “AND-

decomposition” and “XOR-decomposition” for the 

superstate, allowing cross-layer migration and parallel 

relationship representation of states, and supporting the 

continuous refinement of behavior description from high 

to low levels. This mechanism of Statecharts has been 

borrowed by many languages, including Modechart, 

RTRSM*, Stateflow, and RSML. 

Some languages use modes to organize tasks. For 

example, the SCR method points out that after 

representing the system output data as a mapping 

relationship between the system state and input, modes 

are used to organize these mapping relationships, and the 

modes are different system state classes. SPARDL uses 

modes to organize tasks. Its mode diagram contains two 

levels. The high level is the mode and mode transition, 

and the low level is a set of computing tasks represented 

by a control flow in each mode. The Giotto language [39] 

is also similar. The difference is that the modes in 

SPARDL allow nesting, which is similar to the 

superstate in Statecharts. The tasks in Giotto allow 

concurrent execution, while the control flow in SPARDL 

is sequential execution. 

Some languages are divided into many levels and define 

the relationship between their levels. For example, the 

ASLAN language, whose requirements description 

contains a sequence of levels, and each level is an 

abstract view of the system’s data types. The top-level 

view is a very abstract model of the system’s 

composition, and also includes what the system does 

(state transitions) and the key requirements that the 

system must meet (invariants, constraints). Lower levels 

will add more details, and the implementation of high-

level requirements by low-level requirements is 

represented by an implementation relationship. The 

ASTRAL language retains the hierarchical 

representation of ASLAN. The Hume language supports 

a three-layer representation. The outermost layer 
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represents the external (static) 

declaration/metaprogramming layer, the middle layer 

describes the static layout of the dynamic process, and 

the inner layer describes each process as a dynamic 

mapping from a pattern that matches the input to an 

expression that produces the output. The RTRL language 

uses features to express requirements, decomposes 

requirements into a set of features, and features contain 

many independently implemented functions. 

Some languages support the decomposition of language 

elements. For example, the FRORL language uses the 

frame of objects and activities to express the 

requirements model. The concept of activity is an 

abstract concept. It represents each activity frame as a 

variable, and different instances of the same activity can 

be represented in the same frame. It provides a 

mechanism to decompose an activity into multiple sub-

activities, and these sub-activities can be in a sequential 

or parallel relationship. At the same time, it also supports 

a stepwise refinement mechanism. The PAISLey 

specification is composed of a set of function definitions, 

and the call of functions is represented by a hierarchical 

data flow diagram and an embedded control table. In 

GCSR, an entity is a basic concept. It can contain many 

nodes (such as resources, events, etc.) and composite 

nodes (a group of resources and events), and can be 

decomposed into lower-level entities. The RSL language 

contains AND and OR nodes to decompose the 

conditions for processing requirements. The SDL 

language uses blocks to organize the system’s behavior 

and structure. This block can be continuously 

decomposed into multiple blocks until a block only 

contains processes. SDL also provides a variety of 

substructure concepts: the substructure of a block is used 

to further describe the internal structure of the block; the 

substructure of a channel is used to describe the behavior 

within the channel; the signal refinement mechanism is 

the refinement of signals, the purpose of which is to hide 

the details of low-level signals to obtain a high-level 

abstraction, allowing the system’s behavior to be 

described from top to bottom. 

In addition, in order to support the requirements 

hierarchy in the language, some languages also have 

method support. For example, the SREM method [21] to 

which the RSL language belongs supports the 

decomposition of functions into a group of low-level 

functions. The SCR method and PAISLey also have 

method support. These methods provide a process for 

obtaining the specifications of these requirements 

description languages, which is also a very important 

part. 

In short, the existing languages basically support the 

expression of different description granularities, which 

may be the same or different language elements, and 

support the description of requirements of different 

granularities, so that the requirements can be 

continuously improved from a higher abstract level of 

description of the same type to a lower level of specific 

description through decomposition, refinement, and 

other means. There are also some works that support the 

expression of requirements granularity of different 

requirement types and establish the refinement or 

decomposition relationship between them. Some 

languages will also provide decomposition and 

refinement mechanisms, and even process support, but 

decomposition and refinement all rely on requirements 

analysts and domain experts, and their quality seriously 

depends on human experience. In particular, the current 

decomposition is basically functional division, and there 

is no intertwining between requirements. For complex 

embedded systems, both decomposition and refinement 

are needed, but how to improve efficiency and quality is 

still a problem to be solved. 

5.4 Supported Non-functional Requirements 

According to the investigation, the non-functional 

requirements involved in the current software 

requirements description languages mainly include time-

related requirements (timing, real-time, delay, 

performance, time constraints, etc.), accuracy, exception 

handling, and resource constraints. Time-related 

requirements are involved more. 

Some languages use the concept of timers to represent 

delays. For example, Statecharts and SDL both use 

timers to specify the delay time on the basis of the state 

and transition of the functional requirements description. 

After this time, the timer generates a specific (timeout) 

event or signal, which in turn leads to a state transition. 

Some languages express periodic time constraints and 

their corresponding sporadic time constraints. For 

example, the functional description in SCR is divided 

into demand functions and periodic functions, which 

correspond to these two time constraints. The demand 

function specifies a specific trigger event, and the 

periodic function specifies the start and stop events, as 

well as the execution period. The time constraint of 

Modechart is related to the execution of actions under a 

specific mode and conditions of the system. The sporadic 

time constraint is expressed as the completion deadline 

and interval time, and the periodic time constraint is 

expressed as the execution period and completion 
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deadline. Similarly, the periodic time constraint in RT-

FRORL is represented as a simple periodic attribute of a 

time activity, and the representation of the paroxysmal 

time constraint introduces the operation of a global clock 

variable. The time requirement in RT-ASLAN is 

expressed as the sequential relationship of state 

transitions and the periodic attribute of transitions. 

Other time-related expressions are as follows. The 

timing in ESB is expressed by defining the time 

sequence relationship of events and is integrated into the 

functional description. The performance requirement in 

RSL is expressed by a specific data processing path in 

the R-net, and the performance requirement is expressed 

as the maximum and minimum response time of a 

specific path. The real-time requirement in GCSR is 

related to actions, and the execution of actions takes a 

certain amount of time. ASTRAL, on the basis of RT-

ASLAN, provides operations for the start and end times 

of state transitions, and also adds the requirement of 

scheduling time for state transitions. The time 

requirements in Giotto and SPARDL are first expressed 

as their described computing tasks are all periodic. The 

mode in SPARDL has a periodic attribute, and the mode 

in Giotto has a conversion frequency. SPARDL also 

provides timing predicates and timing control flow 

relationships to describe the transition conditions of 

modes and control the computing tasks within the 

modes. The performance requirement in PAISLey is 

related to the function that describes its process behavior. 

The time requirement in RSML is expressed in the 

guarding condition of the state transition and is 

expressed as a time function. RSML describes three time 

functions: the variable value at the previous time point, 

the true value of the condition at a certain point in the 

past, and the event implicitly generated based on time 

(that is, the timeout relative to the state item), all of 

which are based on the guarding condition. 

For exception handling in robustness, SCR records all 

abnormal events and the system’s response as a separate 

part, which is divided into three categories: resource 

(device) failure, incorrect input data, and incorrect 

internal data. The superstate and hierarchical state 

machine in Statecharts can flexibly represent local 

abnormal events and global abnormal events and their 

handling, and RSML is similar to it. GCSR clearly 

handles abnormal events through an exception edge, 

allowing cross-level migration of states, which is similar 

to Statecharts. 

Other non-functional requirements are expressed as 

follows. Accuracy requirements are all related to data. 

For example, the accuracy requirement in RSL is related 

to the data stored at the verification point. The resource 

requirement in GCSR is related to actions, and the 

execution of actions consumes a set of resources. The 

reliability requirement in PAISLey is expressed by 

probability and is related to the function that describes 

its process behavior. 

In short, from the perspective of non-functional 

requirements, the description of software capability 

requirements includes functional requirements. Its 

existing non-functional requirements descriptions only 

include some requirements that can be expressed on the 

basis of functions, such as time, reliability, exception 

handling, and accuracy. Other types of requirements that 

cannot be directly expressed on the basis of functions, 

such as personal safety, are not involved. 

6. ANALYSIS OF THE DEVELOPMENT TREND 

OF REQUIREMENTS DESCRIPTION FOR 

EMBEDDED SYSTEMS 

This section starts with the challenges faced by the 

requirements description of complex embedded systems, 

proposes the need to study new embedded software 

requirements description languages, and further 

proposes specific requirements for the requirements 

description for the intelligent synthesis of embedded 

software. 

6.1 Challenges for Requirements Description of 

Complex Embedded Systems 

The development of embedded systems is a process of 

“embedding” software into a “embeddable” computing 

device. First, the computing function is “embedded” into 

the application object, and then with the access of 

multiple forms of networks, the embedded system 

presents a networked feature. In recent years, embedded 

software has been integrated into more physical objects, 

forming a variety of embeddable digital devices. They 

have the ability of environmental perception and 

autonomous interaction, so that the computing device is 

deeply “embedded” in the application object and 

“disappears” in the physical world, promoting the deep 

integration of the ternary world of human, machine, and 

object. Such complex embedded systems bring the 

following challenges to the description of software 

requirements. 

First, the description of complex embedded requirements 

cannot only involve software capability requirements, 

but should describe all types of requirements involved in 

embedded systems, that is, task intent, system 
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requirements, peripheral requirements, operating 

platform constraints, and software design constraints. 

The development of embedded software starts from the 

task intent, and its task intent is closely related to the 

external interactive environment. The task intent and 

system capability requirements are its source. Embedded 

software will be directly placed in the physical world 

through a variety of sensing devices and acting devices, 

and its system equipment requirements must also be 

recorded. In addition, embedded software needs to run 

on a specific platform according to a specific strategy, 

and its resources, performance, etc. must be constrained. 

Software design constraints may also exist. 

Secondly, it is necessary to define the description 

dimensions of each requirement level. Complex 

embedded systems involve complex control processes 

and calculation processes, including two major 

dimensions of behavior and data. But at different 

requirement levels, the dimensions may be completely 

different. At the task intent level, it is mainly for the 

expected effect on the external environment. The system 

capability requirement is as long as the input and output 

sequence with the external environment. The software 

requirement is the input and output sequence with the 

system equipment, and the software design constraint 

includes the calculation formula between the input and 

output. 

Third, it is necessary to define a systematic software 

requirements specification method to establish a tracking 

relationship between different levels from task intent to 

software requirements (including functional and non-

functional requirements) to cope with the increasing 

complexity of embedded system requirements changes. 

In embedded systems, the system task intent is the 

beginning of software development, the system 

capability requirements meet the task intent, and the 

software capability requirements and system equipment 

requirements jointly meet the system capability 

requirements. With the tracking relationship, the 

software requirements can be effectively changed 

according to the reasons for the requirements changes. 

Fourth, it is necessary to provide more efficient 

requirements analysis methods for the decomposition 

and refinement mechanism of requirements. In 

embedded systems, due to the strong device dependence 

of its software, the control requirements of the software 

requirements are intertwined, and the scheduling and 

control of the same device appear in different 

requirements, such as the two requirements of 

“automatic light off” and “manual light off” are both to 

control the light. This device intertwining makes the 

original partitioned requirements decomposition (no 

intertwining) no longer applicable. They do not pay 

attention to the characteristics of the device in the 

decomposition, which may lead to inconsistent 

requirements after decomposition, such as one 

requirement may require the light to be turned on, while 

another requirement requires the light to be turned off at 

the same time. In addition, with the increase of 

embedded devices and the complexity of embedded 

systems, manual requirements analysis will become a 

bottleneck in development, and automated requirements 

analysis methods are needed to improve efficiency. 

Complex embedded systems need to design new 

requirements description languages. In the design, it is 

necessary to target the characteristics of embedded 

software, describe the task intent of embedded software, 

extract the main components of the embedded software 

language on the basis of requirements analysis at all 

levels and dimensions, and define the logic of the 

language to support the expression of embedded 

software requirements. This is a task that spans the entire 

requirements stage of embedded software. It is necessary 

to comprehensively learn from and expand existing 

requirements engineering methods, combine effective 

requirements extraction, modeling, analysis, simulation, 

and verification technologies, propose a language 

structure, and define a structured embedded system 

requirements description language with sufficient 

expressive power. 

6.2 Requirements from the Intelligent Synthesis of 

Embedded Software 

At present, software intelligent synthesis has become a 

software automation technology that has attracted much 

attention [134]. Software intelligent synthesis refers to 

the use of artificial intelligence foundations such as 

machine learning on the basis of traditional software 

synthesis technology to automatically synthesize 

software that meets user intent by using existing code 

knowledge. The software requirements specification that 

carries the user’s intent is the basis for software 

intelligent synthesis, and its importance is self-evident. 

The intelligent synthesis of embedded system software 

will also become a future research hotspot [135], which 

brings new requirements to the description language of 

embedded system software requirements specification. 

First, from the perspective of description dimension, it 

needs to express various dimensions of requirements 

specifications, including behavior, data, constraints, etc. 

Embedded software is the same as general software, and 
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each piece of code has a control flow and a data flow. 

Since most embedded software needs to schedule system 

equipment in real time, the description of system 

equipment must be added to the requirements 

description, such as ports, response time, communication 

protocols, etc. Not only that, it also needs to add 

constraints on performance, efficiency, safety, 

reliability, etc., so that software that meets the needs of 

equipment scheduling can be synthesized. 

Secondly, from the perspective of description 

granularity, it is best to decompose the software 

requirements to a relatively small granularity, also 

known as atomic requirements. This granularity is best 

to be at the same description granularity as the function 

of the software asset, or a smaller granularity. 

Refinement technology is still needed to improve the 

description of requirements from a high abstract level to 

a low-level specific description. In addition, due to the 

high complexity of current embedded systems, the 

decomposition or decoupling of requirements is 

essential. Different from the software decomposition of 

traditional information systems—functional division, the 

software of embedded systems is closely related to 

hardware devices, and its decomposition also needs to 

consider that the same device may be called in different 

functions, and there is device sharing, which will bring 

new challenges to the decoupling of intertwined software 

requirements. 

Third, from the perspective of the description scheme, a 

complete project requirements specification must also 

clarify the dependency relationship between atomic 

requirements, so as to synthesize complete project code. 

Due to the intertwining of devices between atomic 

requirements, it may bring control dependencies. For 

example, the requirement “automatic light on” requires 

the light to be in a powered state first, while the 

requirement “initialization” will make the light enter a 

powered state, then “automatic light on” is control-

dependent on “initialization.” Due to the data sharing 

between atomic requirements, it may bring data 

dependencies, that is, one requirement produces data, 

and another requirement uses data. These control 

dependencies and data dependencies may be expressed 

as sequential or concurrent relationships between atomic 

requirements, which will affect the subsequent synthesis. 

Finally, from the perspective of description form, the 

software requirements description language for 

intelligent synthesis must be machine-understandable to 

facilitate subsequent code synthesis. It is best to be 

formally expressed, with strict syntax and precise 

semantics. Its software requirements specification can be 

automatically converted into a simulation model or a 

verification model. Before synthesizing the software, the 

requirements can be simulated, confirmed, and verified. 

The test cases of the final synthesized software can be 

automatically generated, and the software can be tested 

after synthesis. After multiple simulations, verifications, 

and tests, the quality of the synthesized code is 

guaranteed. 

7. CONCLUSION 

This paper conducted a systematic literature review on 

the topic of requirements description for embedded 

systems, provided an overview of the current situation of 

requirements description types for embedded systems, 

comprehensively compared the capabilities of existing 

embedded system requirements description languages, 

summarized the challenges faced by the requirements 

description of complex embedded systems, predicted 

future trends, and discussed the capability requirements 

of the requirements description language for embedded 

systems for the task of intelligent software synthesis. 

During the review and investigation process, our 

exclusion criteria may have some bias, which may cause 

our review paper to not cover all relevant fields. For 

example, we did not include references written in other 

languages. However, since most research results have 

corresponding English versions, this will not have a 

substantial impact on our investigation of the current 

situation of embedded requirements description types 

and requirements description languages. In addition, the 

search process may have a certain degree of instability, 

and the search engine may sometimes have a large 

number of documents that are not related to the search 

keywords. However, documents with higher relevance 

will usually be displayed first, so it will not affect our 

research results. 

Currently, most requirements description languages only 

describe software capability requirements and do not 

describe various other possible types of requirements, 

such as system task intent, system capability 

requirements, etc. For the future intelligent synthesis of 

embedded software, the new requirements description 

language describes various types of requirements 

starting from the task intent, establishes their tracking 

relationship, can analyze the problem of control 

requirements intertwining caused by device sharing, and 

through decoupling, describes the requirements at a more 

appropriate granularity to facilitate subsequent code 

synthesis based on software assets. 
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