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ABSTRACT 

This paper addresses the critical challenge of offline signature verification, a task crucial for authenticating 

documents and identities. Existing deep learning approaches, primarily deep metric learning with Siamese 

networks and two-channel discriminative methods, face limitations. While Siamese networks excel at feature 

extraction, their reliance on Euclidean distance can overlook subtle directional and scaling information, 

hindering the capture of intricate feature relationships. Conversely, two-channel discriminative methods, though 

effective in initial dissimilarity assessment, often suffer from significant feature loss due to early image fusion. 

To overcome these challenges, we propose the Multi-channel Feature Fusion Network , a novel writer-

independent model for handwritten signature verification. The proposed framework leverages a quadruple 

Siamese network and a dual inverse discriminative attention mechanism for robust feature extraction and 

enhancement from both original and inverse grayscale images. These rich, multi-dimensional features are then 

integrated through an innovative channel fusion process. Finally, an ACMix-based discriminative module is 

employed to determine image similarity with high precision. Comprehensive experiments on four diverse 

language signature demonstrate the superior efficacy and promising potential of the framework, affirming its 

advantages over current methodologies. 

Keywords: Offline handwritten signature verification, deep learning, channel fusion 

1. INTRODUCTION 

 In contemporary society, signature handwriting 

verification, as one of the crucial forensic methods, is 

widely applied in various fields such as law, insurance, 

and culture [15,20,10,19,41]. Due to the uniqueness, 

stability, and reliability of signature handwriting, it 

serves as an important basis for authenticating 

documents and confirming identities. However, with the 

continuous advancement of technology, signature 

handwriting examination also faces numerous 

challenges. The origin of signature handwriting can be 

traced back to ancient times when people used various 

symbols and graphics to sign. With the development of 

paper and ink, people began to use handwritten 

signatures. As early as 439 AD, the Roman Empire used 

signatures to verify the authenticity of documents. 

However, it was not until the early 20th century that 

signature handwriting began to attract research attention. 

During this period, disciplines such as psychology and 

statistics began to be applied to the study of signature 

handwriting, providing a theoretical basis for signature 

handwriting examination. 

Signature handwriting plays an important role in 

multiple fields. In the legal field, signature handwriting 

is a crucial basis for confirming the authenticity of 

documents and is also part of the evidence in court. In 

the insurance field, signature handwriting is used to 

identify the authenticity of policies and prevent 

insurance fraud. In the cultural field, signature 

handwriting reflects the artist’s style and personality, 

holding significant value for in-depth research in 
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graphology. With technological progress, signature 

handwriting examination faces many challenges. 

Signature handwriting is susceptible to factors such as 

writing habits, emotions, and environment, making the 

accuracy of handwriting examination complex. 

Furthermore, the development of signature forgery 

techniques also brings certain difficulties to the 

examination work. Considering that the authenticity of 

most current documents still relies on handwritten 

signatures for verification, and the cost of manual 

judgment is too high, there is an urgent need to develop 

an accurate and efficient signature verification 

technology. 

Signature verification technologies are divided into 

online signature verification technology and offline 

signature verification technology based on the input 

method. For online signature verification, researchers 

can obtain dynamic information about the signing 

process, such as stroke trajectories, inclination, and pen 

pressure [16,31,8,9]. In offline signature verification 

technology, researchers can only obtain static 

information, which is signature images captured by 

scanners or cameras [34,17,1,42]. Because static 

information provides less information than dynamic 

information, offline signature verification is more 

challenging than online signature verification. In today’s 

environment, where paper documents are widely used, 

offline signature verification has a more widespread 

application space. Signature verification technology is 

also divided into writer-dependent and writer-

independent methods based on whether it is related to the 

writer. In writer-dependent methods, researchers’ test 

samples depend on training samples, meaning that each 

signatory in the test set has a certain amount of signature 

samples in the training set [21,22,2]. In practical 

applications, it is impractical to collect and train a large 

number of samples for each user. In writer-independent 

methods, the users in the training set and the test set are 

independent of each other [36,32], thus, they are more 

valuable in practical applications. 

Signature forgery methods are classified into three types 

based on the proficiency of forgery: random forgery, 

simple forgery, and skilled forgery [11]. Random forgery 

signatures have no information about the imitated 

person, so they differ greatly from genuine samples. 

Simple forgery involves forged samples that do not 

follow the writing style of the imitated person, having 

some similarity to genuine samples. Skilled forgery is 

performed by professionals who analyze the signature 

characteristics of the imitated person, resulting in highly 

similar forged signatures. For skilled forged samples, 

non-professionals generally cannot distinguish them. 

Therefore, if criminal organizations obtain relevant 

information about the imitated person and meticulously 

forge signatures for criminal activities, this will have 

adverse effects on the original signatory. Furthermore, 

for the writer themselves, signatures written in different 

environments can also vary greatly. Therefore, finding 

the differences between genuine and forged samples will 

be a challenging task. To facilitate researchers’ study of 

offline signature verification methods, many public 

offline signature verification datasets are currently 

available in academia, such as the English CEDAR 

dataset [28], GPDS dataset [24], the BHSig260 dataset 

[7] which includes Bengali and Hindi, and the Chinese 

MSDS dataset [42], ChiSig dataset [37]. 

Before the rise of deep learning, researchers typically 

used traditional image processing methods such as 

feature matching for signature verification. For example, 

references [6] and [30] developed the first offline and 

online signature verification systems; reference [12] 

utilized the stroke directionality of characters for 

directional decomposition, then performed band 

decomposition on the sub-images of each direction, 

using the decomposed sampled signal values as 

handwriting features, and employed feature matching 

methods for writer identification; reference [25] 

performed identity discrimination through multi-channel 

two-dimensional Gabor filtering and other methods. 

Nowadays, researchers are continuously exploring new 

methods for signature handwriting examination, and 

with the rise of deep learning and related technologies, 

reference [3] adopted a Siamese network to extract 

features from two input sample images separately, and 

then used metric learning methods to determine the 

similarity distance between the two signatures, selecting 

a threshold to determine if they were written by the same 

person. This metric learning method has significant 

limitations: on one hand, most metric learning methods 

use Euclidean distance for calculation, and Euclidean 

distance only considers the absolute distance between 

two points, easily overlooking direction and scaling 

information, and not considering the correlation between 

data, thus ignoring the relationships between values 

within feature vectors; on the other hand, its metric 

threshold is solved through an iterative process, which, 

although it can obtain the optimal solution for the current 

dataset, has low generalization ability, and the same 

threshold will have completely different effects on 

different datasets. Therefore, reference [4] proposed 

DeepHSV to address this drawback, using a two-channel 

discriminative method for offline handwriting 

verification. By image fusion, two images to be 

compared are fused into a single image for model input, 
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which can effectively solve the limitations of metric 

learning. However, they directly fuse the images before 

model input, at which point the features of the two 

compared images are not yet very distinct, leading to the 

loss of a large number of fine features between different 

images, thus making it impossible to distinguish 

meticulously forged signatures. Reference [33] proposed 

an inverse discriminative octuple attention mechanism, 

where inverse discriminative images are attached as 

attention to the original images, making the model focus 

more on stroke features, and achieved good results on 

multiple datasets. The limitation of this method is that it 

focuses too much on the features of the original image 

and only uses inverse discriminative features as auxiliary 

judgment information. This paper believes that 

handwriting features can be obtained not only from the 

original image but also from inverse grayscale images, 

which contain a large amount of image features. 

Offline handwriting signature verification technology 

can be regarded as a binary classification task, but it 

differs significantly from traditional image 

classification. The differences are: 1) The similarity 

between the two input images in a handwriting 

verification system is much higher than in other fields, 

and the detailed differences between the two images are 

too sparse; 2) The images are grayscale single-channel 

images; 3) The essence of handwriting verification 

system discrimination is style comparison, and improper 

design can easily lead to overfitting. To address these 

issues, different scholars have proposed different 

solutions, such as IDN [33], TransOSV [18], LGR [23], 

etc. The above methods use CNN or self-attention [33–

34] techniques, which are generally classified into 

different types. However, ACMix proposed in reference 

[13] proves that the two methods have a strong potential 

relationship. This paper uses it as the discrimination 

module of the model, which will make the model focus 

more on the sparse information features of the fused 

images to achieve higher discrimination accuracy. 

This paper addresses the limitations of two-channel 

discriminative methods by designing a Multi-channel 

Feature Fusion Network framework. It employs dual 

inverse discriminative attention for feature extraction 

and enhancement of original and inverse grayscale 

images, integrates the extracted multi-dimensional 

vectors through channel fusion, and finally uses ACMix 

for image similarity judgment. This network model has 

achieved good results on four datasets: CEDAR, BHSig-

B, BHSig-H, and ChiSig, demonstrating the 

effectiveness and generality of the proposed method. 

The main contributions of this paper are as follows: 1) 

Proposed the framework, which enhances the differences 

between genuine and forged images by fusing multi-

Siamese networks to extract multi-dimensional detailed 

features of input images; 2) Improved the inverse 

discriminative attention module, strengthening the 

ability to extract signature features through a dual 

inverse discriminative attention mechanism; 3) 

Conducted experiments on CEADR, BHSig-B, BHSig-

H, and ChiSig datasets, achieving excellent results 

superior to baseline papers and most existing methods. 

1.1 Siamese Network 

Deep metric learning methods primarily involve two 

samples passing through the same network to generate 

sample vectors, after which the distance between these 

two samples is calculated to determine if they belong to 

the same class. This network is known as a Siamese 

network. Siamese networks, also called twin networks, 

are a special neural network structure that can input two 

images for feature extraction, with the two models 

sharing weights. In 1993, Siamese networks were first 

proposed for signature recognition on American checks 

[18]. 

Due to their simple structure and ease of implementation, 

Siamese networks are widely used in image similarity 

measurement. After passing through the same feature 

extractor, the extracted features have strong image 

representativeness. Generally, this network is often used 

to handle verification problems where the two inputs do 

not differ significantly. The network takes a pair of 

samples as input and is trained to make samples with the 

same label closer in the feature space, and samples with 

different labels further apart. Therefore, this network has 

promoted the development of offline signature 

verification. For example: SigNet proposed in reference 

[37], MSDN proposed in reference [23], TransOSV 

proposed in reference [12], etc. The basic network 

framework of a Siamese network is shown in Figure 1: 

where A and B are the two input samples, Network 1 and 

Network 2 are feature extraction networks, and the two 

networks share parameters. After inputting images, 

feature vectors a and b are generated through the feature 

extraction network, and the metric distance between 

samples a and b is calculated using a metric function. 

Finally, the network parameters are optimized using a 

contrastive loss function or other loss functions. 
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Figure 1: Network Structure Diagram 

By generating two feature vectors through a Siamese 

network, and adhering to the principle that images of the 

same category are closer and different images are further 

apart, an optimal threshold can be found by traversing 

the range between the minimum and maximum 

distances. However, the method of traversing to find the 

optimal threshold has a significant limitation: the current 

threshold is obtained by traversing the current training 

and test sets, resulting in very low algorithm scalability. 

Moreover, using Euclidean distance to judge the 

similarity of different images, while Euclidean distance 

only considers the absolute distance between two points, 

easily overlooks information about direction and scaling, 

and does not consider the correlation between data, thus 

ignoring the relationships between values within feature 

vectors. Therefore, a new method is needed to solve this 

problem. 

1.2 Two-Channel Discriminative Network 

Another mainstream offline signature verification 

method is the two-channel discriminative method, which 

fuses two images and directly outputs 0/1 to determine if 

they belong to the same class. The biggest difference 

between this method and the Siamese network is that the 

Siamese network generates vectors from two samples 

through the same network structure and then makes a 

judgment, while the two-channel discriminative network 

fuses the two images into a single two-channel image 

before inputting them into the network, and then inputs 

this single image into a monolithic network to obtain the 

result of whether they are of the same class. In a two-

channel discriminative network, the network does not 

explicitly extract the input features, but measures their 

distance in the first step. This design greatly reduces the 

search parameter space, making two-channel networks 

particularly suitable for signature verification. The 

image similarity calculation method based on two 

channels was proposed by reference [38], and since its 

proposal, it has achieved considerable results in the field 

of offline signature verification. For example, reference 

[6] used two-channel fusion and dual logit output as 

supervision conditions for training in offline signature 

verification. Reference [12] proposed an offline 

signature framework based on two channels and dual 

Transformers, etc. The basic network diagram of a two-

channel discriminative network is shown in Figure 2: 

where A and B are the two input samples, and the 

network model is a feature extraction network. After 

inputting two images, they are first fused into a new 

image C through image preprocessing before entering 

the monolithic network. Then, C is input into the 

monolithic network, and the network output directly 

indicates whether they were written by the same person, 

i.e., 0 or 1. 

 

Figure 2: Structure of 2-channel network 

Essentially, the two-channel discriminative method 

treats image similarity judgment as a binary 

classification method. Through the two-channel 

discriminative network, the calculation of similarity 

distance is performed in the first step of the network, and 

the network directly outputs whether the signatures were 

written by the same person. Compared to the Siamese 

network method, this method significantly reduces the 

search parameter space, effectively speeding up network 

training; on the other hand, the method of directly 

outputting results avoids the limitations of the Siamese 

network’s threshold, and the accuracy will not be 

significantly affected when changing training datasets or 

adding data. Current networks for two-channel 

discriminative methods directly perform fusion on 

original images or after image cropping, i.e., measuring 

the distance on the initial two images. At this point, the 

image features are not yet obvious, and simply fusing 

them will result in the loss of a large number of fine 

features, ultimately leading to poor model performance. 

1.3 Grayscale Processing 

In offline signature verification, this paper inputs two 

single-channel images. Reference [14] also attempted to 

train with three-channel color images, but the effect was 

not as good as grayscale images. In grayscale images, 

different grayscale distributions will have a significant 

impact on the model’s results. For example, black text 

on a white background and white text on a black 

background, different inputs will have a significant 

impact on the training of the same model. This is because 

in signature verification images, the data model only 

needs the feature information of the handwriting strokes, 

and most background information is invalid or even 

harmful. If the background information consists of pixels 

with a value of 0, the result after convolution will not 

change, which has a considerable impact on feature 

extraction and even the model’s output. However, this 

does not mean that white-on-black images are all invalid 

information; they also contain detailed and important 

information. Addressing this issue, reference [30] 

proposed an inverse discriminative network, where the 

network input is a black-on-white image. This network 

enhances the effective information for signature 
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verification through grayscale processing and a multi-

path attention module. The attention module of this 

method extracts features from inverse grayscale images 

and creates an attention module loaded onto the original 

grayscale images, making the model focus more on the 

stroke information of the image. This method 

innovatively extracts features from both black-on-white 

and their inverse grayscale images. However, the focus 

of feature extraction in this method is on the original 

grayscale image, neglecting that its inverse grayscale 

image is not only a tool for auxiliary attention but also 

contains a large amount of handwriting stroke 

information. 

1.4 ACMix 

Convolutional kernels and self-attention are two 

powerful techniques for representation learning, and 

there is a strong potential relationship between them 

because most of the computations in these two 

paradigms are actually performed through the same 

operations. Specifically, a convolution with kernel size k 

× k can be divided into k2 individual 1 × 1 convolutions, 

followed by shifting and summing operations. In 

ACMix, 1 × 1 convolutional kernels are first used to 

project input features into queries, keys, and values, and 

then the attention weights and the aggregation of value 

matrices, i.e., the aggregation of local features, are 

calculated. Therefore, ACMix can elegantly integrate 

these two seemingly different paradigms, enjoying the 

benefits of both self-attention and convolution, while 

having smaller overhead compared to pure convolution 

or self-attention [33]. 

This paper proposes a network structure to address the 

feature loss problem in two-channel discriminative 

networks. It employs a quadruple Siamese network and 

a dual inverse discriminative attention mechanism for 

feature extraction, fuses the extracted multiple subtle 

features through channel fusion, and finally uses a 

combination of self-attention and convolutional 

networks to determine whether it is a genuine sample 

pair. 

2. METHODOLOGY 

 As an end-to-end signature verification system, 

it consists of feature extraction, channel fusion, and an 

ACMix module. A pair of signature images first undergo 

inverse grayscale acquisition, generating a total of four 

images, which are then input into a quadruple Siamese 

network. Then, the grayscale and inverse grayscale 

images of the same image are weighted and calculated 

through a dual inverse discriminative attention module 

to extract a large number of detailed features. Finally, the 

extracted different image representations are fused 

through channel fusion, and a combination of 

convolutional neural networks and self-attention is used 

for discriminative processing to achieve high-similarity 

image discrimination. 

2.1 Dual Inverse Discriminative Attention Module 

The feature extractor of this network adopts a quadruple 

Siamese network structure. This network consists of two 

convolutional blocks, each containing two convolutional 

layers activated by ReLU function. Each convolutional 

layer has a size of 3 × 3, stride of 1, and padding of 1. 

The dimension of each convolutional block is 64, 128. 

The reference image and its inverse grayscale image, and 

the test image and its inverse grayscale image are 

respectively input into the feature extraction network, 

and the networks share weights. Between the grayscale 

image convolutional block and the corresponding 

inverse grayscale image convolutional block, four dual 

stroke attention modules are connected. Each attention 

module connects the convolutional module in the 

discriminative flow and the convolutional module in the 

inverse flow, as shown in Figure 3. 

 

Figure 3: Dual reverse forensic attention module 
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The grayscale image convolutional block and the inverse 

grayscale image convolutional block of the same image 

are simultaneously input into the dual inverse 

discriminative attention module. Among them, 

according to the different moments of output from the 

grayscale image convolutional block and the inverse 

grayscale image convolutional block, two data streams 

enter the shared attention. The internal flowchart of the 

attention module is shown in the right part of Figure 3, 

taking the yellow data stream in the left part as an 

example: The feature vector output from the grayscale 

image convolutional block is input into the upsampling 

structure, which uses the nearest neighbor algorithm for 

upsampling and performs convolution operations with 

Sigmoid activation, outputting g. The inverse grayscale 

image convolutional block outputs h after ReLU. h is 

multiplied by the elements of g, and then h is added to 

produce the intermediate attention measurement h · g + 

h, where “·” denotes element-wise multiplication. The 

subsequent Global Average Pooling (GAP) layer and a 

fully connected layer (FC) with Sigmoid activation 

receive the intermediate attention measurement and 

output a weight vector f. Each channel is multiplied by 

each element of f to generate the final attention (h · g + 

h) × f, which is then output to the second layer of the 

inverse grayscale image convolutional block for 

convolutional processing. This method has two data 

streams, red and yellow, depending on the input and 

output, and the shared attention module parameters are 

shared between them. The dashed boxes in the two 

convolutional blocks also share weights, and the two 

convolutional blocks also share weights. Assuming the 

ReLU output of the grayscale image is x1, and the output 

of the grayscale image convolutional block is y1; the 

ReLU output of the inverse grayscale image is x2, and 

the output of the inverse grayscale image convolutional 

block is y2; the shared convolutional blocks in the 

dashed part are collectively referred to as w. Therefore, 

different data streams have different formulas, 

specifically as shown in equations (1) to (4): 

out1 = h(x1 ) g[w(x2 )] + h(x1 ) (1) y1 = w[out1 × f (out1 

)] (2) out2 = h(x2 ) · g[w(x1 )] + h(x2 ) (3) y2 = w[out2 

× f (out2 )] (4) 

Among them, equations (1) and (2) are for the red data 

stream, and equations (3) and (4) are for the yellow data 

stream. 

In the attention module, this paper processes grayscale 

images and inverse grayscale images separately for 

attention, forming dual inverse discriminative attention.. 

By comparing with IDN’s attention, it is found that 

although IDN has quadruple attention, as the 

convolution operation deepens, the focus of the attention 

module becomes more abstract. In contrast, the 

framework’s attention module, on one hand, introduces 

dual features, creating constraints between attentions, 

enabling accurate focus on stroke edge information even 

in the second layer of attention feature maps; on the other 

hand, by reducing the number of layers, it extracts 

sufficiently detailed features during channel fusion. 

Through the multi-path attention mechanism, the 

important features for signature verification are 

enhanced. 

Since the attention module in this paper connects the 

original grayscale image and the inverse grayscale 

image, the final attention mask will guide the network to 

learn discriminative features for signature verification 

and suppress misleading information. The entire 

framework has 4 attention modules connecting different 

convolutional modules, applying the attention 

mechanism at different scales and resolutions. 

2.2 Multi-channel Fusion 

The two-channel discriminative method fuses two input 

single-channel images into a two-channel image and 

directly outputs whether they are similar to quickly 

obtain results. However, because the two-channel 

discriminative network performs channel fusion in the 

original state of the images, the image features are not 

yet obvious, and simply fusing them will result in the 

loss of a large number of fine features, ultimately leading 

to poor model performance. Therefore, in the 

framework, four images, each with 128-dimensional 

feature information after feature extraction, are fused, 

totaling 512-dimensional feature information. Compared 

to traditional two-channel discriminative networks, our 

framework not only includes the convolutional features 

of the two images to be discriminated but also includes 

the convolutional features of the inverse grayscale 

images of the two images. This method considers more 

channel information during the fusion process, allowing 

the network to capture more information and increasing 

the diversity of fused features. Therefore, in the 

subsequent discrimination stage, this network can 

achieve higher accuracy. 

The proposed framework connects the extracted features 

of the reference image, reference image inverse 

grayscale image, test image, and test image inverse 

grayscale image. Each image has 128 dimensions. After 

passing through the discriminative module, it finally 

outputs 0/1 to determine whether they are the same 

person. Compared to the two-channel discriminative 

method, the multi-channel image formed by multi-
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channel fusion has more fused image features. The 

distance calculation between images changes from one 

positive and one negative sample, totaling two images, 

to 256 dimensions for each positive and negative sample 

to calculate the difference. Because there are more image 

features, the calculated distance is more accurate. 

2.3 Discriminative Module 

In the discriminative module, this paper primarily uses 

the ACMix module, supplemented by two small 

convolutional blocks for discrimination. After feature 

fusion, a 512-dimensional feature vector is obtained, 

with many and large differences between features. To 

accurately extract features, the ACMix module, which 

combines convolution and self-attention, is used for 

feature extraction. 

The 512-dimensional feature representation after 

channel fusion is not directly input into a fully connected 

layer for classification. Instead, it first passes through a 

discriminative module based on a monolithic network 

model [33]. This module performs overall feature 

learning and judgment based on self-attention and 

convolutional networks, finally outputting a 0/1 binary 

classification result. The structure of the discriminative 

module consists of two small convolutional modules and 

one ACMix module. The input of the first small 

convolutional module is the integrated 512-dimensional 

features after channel fusion. Then, the ACMix’s 

convolution and self-attention mechanisms are used for 

feature extraction. Finally, a small convolutional module 

is used for feature summarization, and then it enters a 

multi-layer perceptron for classification. At this point, 

the features entering the multi-layer perceptron are the 

512-dimensional image features extracted by the 

discriminative network, which contain the overall 

difference information between the reference image, 

reference image inverse grayscale image, test image, and 

test image inverse grayscale image. 

Global average pooling is introduced in the multi-layer 

perceptron to reduce network redundancy. To avoid 

overfitting, this paper uses 0.5 Dropout. Finally, the 

entire network will output a Sigmoid-activated feature 

value, generating a judgment probability between 0 and 

1. In the accuracy judgment process, this paper sets a 

probability less than or equal to 0.5 as a forged signature, 

and a probability greater than 0.5 as a genuine signature. 

The loss function uses binary cross-entropy loss, and its 

formula is: 

L = −(1/n) ∑[yi lg(pi ) + (1 − yi )lg(1 − pi )] (5) 

Where yi represents the true label of sample i, 1 for 

positive class, 0 for negative class. pi represents the 

probability that sample i is predicted as positive, and 

similarly, 1 − pi is the probability that the sample is 

predicted as negative. 

3. EXPERIMENT 

The quantity and quality of datasets have a significant 

impact on the model. Currently, with the in-depth 

research of domestic and foreign scholars in the field of 

offline handwriting verification, many public offline 

datasets have been proposed. This paper will use the 

English CEDAR dataset, the BHSig260 dataset 

(including Bengali and Hindi), and the Chinese ChiSig 

dataset for model testing and evaluation. Statistical 

information for various datasets is shown in Table 1. 

The CEDAR dataset is a signature sample dataset in 

English. It consists of samples from 55 signers, with 

each signer having 24 genuine signature samples and 24 

forged signature samples. According to previous work, 

this paper selects samples from 50 individuals for 

training and samples from the remaining 5 signers for 

testing. For each signer, this dataset has 276 reference-

genuine sample pairs and 576 reference-forged sample 

pairs. 

Table 1: Offline signature verification dataset 

Data set  
name 

Language 
Signature 
 type 

Number 
of 
 pictures 

Real to 
fake  
sample 
ratio 

CEDAR English 55 2624 24/24 

BHSig-B Bengali 100 5400 24/30 

BHSig-H Hindi 160 8640 24/30 

ChiSig Chinese 102 10242 -/- 

 

To ensure a balance of positive and negative samples, 

this paper will randomly draw reference-forged sample 

pairs based on the number of reference-genuine sample 

pairs. Therefore, for each signer, this paper will have 276 

reference-genuine sample pairs and 276 reference-

forged sample pairs for training and testing. 

The BHSig260 dataset includes Bengali and Hindi 

datasets, which are treated as two different datasets in 

this paper. The BHSig-B dataset contains Bengali 

signature images from 100 signers. Each signer has 24 
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genuine signatures and 30 forged signatures. Based on 

previous experience, this paper randomly selects 

signatures from 50 signers for training, and signatures 

from the remaining signers for testing. The BHSig-H 

dataset contains Hindi signature images from 160 

signers. Each signer has 24 genuine signatures and 30 

forged signatures. Similarly, this paper will randomly 

select signatures from 100 signers as the training set to 

train the model, and signatures from the remaining 60 

signers as test data. For each signer in the above two 

datasets, this paper also randomly draws 276 reference-

genuine sample pairs and 276 reference-forged sample 

pairs for training and testing. 

Reference [11] constructed a novel Chinese document 

offline signature forgery detection benchmark dataset, 

ChiSig, which includes all tasks such as signature 

detection, restoration, and verification. The dataset 

consists of clean handwritten signatures, synthetically 

interfered handwritten signatures, and synthetic 

documents with handwritten signatures. The authors 

randomly generated 500 names and then asked 

volunteers to sign according to certain rules to obtain 

clean signature data, which can be used for signature 

verification tasks. Because the number of volunteers is 

greater than the number of names, there are cases where 

different writers have the same name, which poses a 

great challenge for signature verification. Afterwards, 

the authors obtained scanned documents that can be used 

as synthetic backgrounds from public resources such as 

the XFUND dataset, Chinese national standards, and 

patents. For this dataset, this paper randomly draws 250 

signatures as the training set and 250 signatures as the 

test set. For each name, signatures written by the same 

volunteer are treated as genuine sample pairs, and 

signatures written by different volunteers are treated as 

forged sample pairs. For dedicated forged data, they are 

only treated as forged sample pairs, and forged data are 

not treated as genuine sample pairs. To ensure data 

balance between genuine and forged sample pairs, this 

paper removes redundant sample pairs. 

3.2 Evaluation Metrics 

For the CEDAR and BHSig260 datasets, this paper will 

follow the settings in reference [30] and use False 

Rejection Rate (FRR), False Acceptance Rate (FAR), 

and Accuracy (ACC) to comprehensively evaluate the 

framework and compare it with other existing methods. 

FRR is defined as the ratio of the number of false 

rejections to the number of genuine samples. FAR is 

defined as the ratio of the number of false acceptances to 

the number of forged samples. ACC is defined as the 

ratio of the number of correctly judged samples to the 

total number of samples. 

For the ChiSig dataset, this paper uses the evaluation 

metrics proposed by the dataset authors: Accuracy, 

Equal Error Rate (EER), and True Acceptance Rate 

(TAR) for comparison. EER evaluates the balance point 

where FRR equals FAR; the lower the EER, the better 

the model performance. The calculation method for TAR 

is shown in equations (6) to (8), and TAR is only 

calculated when the False Acceptance Rate (FAR) 

equals 10−3: 

FAR = (Number of False Acceptances) / (Number of 

Forgeries) (6) FRR = (Number of False Rejections) / 

(Number of Genuine Samples) (7) TAR = 1 − FRR (8) 

3.3 Comparative Experiments 

To verify the model’s effectiveness, this paper selects the 

latest deep learning models for comparison based on the 

current development of handwriting verification tasks, 

namely SigNet (2017arXiv) [37], IDN (2019CVPR) 

[30], DeepHSV (2019ICDAR) [6], SDINet (2021AAAI) 

[13], SURDS (2022ICPR) [39], 2C2S (2023EAAI) [40], 

TransOSV (2022ICME) [12]. These models include 

methods combining Siamese networks with metric 

learning, as well as methods using two-channel 

discrimination. The comparison results are sufficient to 

illustrate the advantages of the proposed model proposed 

in this paper. For convenience of observation, the 

optimal solution is bolded, the suboptimal solution is 

underlined, and the third best solution is wavy. CEDAR, 

BHSig-B, and BHSig-H are shown in Table 2, Table 3, 

and Table 4, respectively. The results for the ChiSig 

dataset will be introduced in Section 3.4. 

In the experimental results on the CEDAR dataset, the 

proposed model achieved 100% accuracy. The main 

reason is that this dataset has a small number of samples, 

a simple structure, and large differences, so many 

methods have achieved good results on this dataset. 

Comprehensive analysis shows that model’s ACC 

improved by 3.62% and 1.75% compared to IDN and 

SDI, respectively, and achieved 100% like SigNet, 

DeepHSV, and 2C2S. In the BHSig-B dataset, the 

experimental results show that the model has a greater 

advantage than current mainstream offline handwriting 

verification algorithms, achieving an accuracy of 

95.61%, and this is also proven in the comparison of 

FRR and FAR, reaching optimal or suboptimal. 

Compared to IDN, model’s ACC improved by 0.29%. 

Compared to the latest algorithms 2C2S and TransOSV, 

it improved by 2.36% and 5.56%, respectively. This is 
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sufficient to prove the superiority of the model proposed 

in this paper. 

Table 2: Comparison on CEDAR dataset (%) 

Model name FRR FAR ACC 

SigNet (2017arXiv) 0 0 100.00 

DeepHSV (2019ICDAR) - - 100 

IDN (2019CVPR) 2.17 5.87 96.38 

SDINet (2021AAAI) 3.42 0.73 98.25 

2C2S (2023EAAI) 0 0 100.00 

OURS 0 0 100.00 

 

Table 3 Comparison on BHSig-B dataset (%) 

Model Name FRR FAR ACC 

SigNet (2017arXiv) 13.89 13.89 86.11 

DeepHSV 
(2019ICDAR) 

— — 88.08 

IDN (2019CVPR) 5.24 4.12 95.32 

SDINet (2021AAAI) 7.86 3.30 94.42 

SURDS (2022ICPR) 5.42 19.89 87.34 

2C2S (2023EAAI) 8.11 5.37 93.25 

TransOSV 
(2022ICME) 

9.95 9.95 90.05 

OURS 3.86 3.84 95.61 

 

Table 4 Comparison on BHSig-H dataset (%) 

Model Name FRR FAR ACC 

SigNet (2017arXiv) 15.36 15.36 84.64 

DeepHSV (2019ICDAR) — — 86.66 

IDN (2019CVPR) 4.93 8.99 93.04 

SDINet (2021AAAI) 3.77 6.24 95.00 

SURDS (2022ICPR) 8.98 12.01 89.50 

2C2S (2023EAAI) 9.98 8.66 90.68 

TransOSV (2022ICME) 3.39 3.39 96.61 

OURS 4.89 4.89 95.70 

Similar to CEDAR and BHSig-B, our model also 

achieved good results on the BHSig-H dataset. 

Compared to the latest algorithms, model achieved an 

accuracy of 95.7% on the BHSig-H dataset, although it 

is not the optimal result, its FRR is third best, and the 

others are suboptimal. Furthermore, compared to the 

optimal, model’s accuracy is only 0.89% lower, while in 

BHSig-B, compared to the optimal model TransOSV in 

BHSig-H, our model achieved a 5.56% lead in accuracy. 

This is sufficient to show that model’s generalization 

ability is superior to TransOSV. 

3.4 Ablation Experiment 

In addition, this paper conducted ablation experiments 

on the ChiSig dataset. InceptionResnet is the baseline 

model provided in the dataset paper [11]. This paper 

conducted comparative experiments by reproducing 

SigNet and IDN code. 

As shown in Table 5, the baseline IDN compared with 

its channel fusion method, the channel fusion method 

improved the accuracy by 0.9% compared to the original 

method; the dual inverse discriminative attention 

expanded the information of the inverse grayscale image, 

providing more detailed information during channel 

fusion, which improved the accuracy to 88.96%, an 

increase of 3.24% compared to channel fusion. The 

ACMix discriminative structure further improved the 

model’s accuracy to 95.23%. 

Table 5 Ablation experiment on ChiSig dataset (%) 

Model Name EER TAR ACC 

InceptionResnet 6.60 28.10 93.60 

SigNet — — 82.28 

IDN (Baseline) 17.91 10.50 84.82 

IDN (Channel Fusion) 14.81 9.61 85.72 

IDN (Channel Fusion + Attention) 11.38 7.82 88.96 

OURS (No Inverse Gray, No Attention) 11.78 32.49 88.09 

OURS (No Inverse Gray, Single 

Attention) 
10.83 — 89.20 

OURS (Inverse Gray, No Attention) 7.84 — 92.14 

OURS (Full Model) 5.19 28.96 95.23 

 

To demonstrate the impact of inverse grayscale images 

and corresponding attention on the results, this paper 
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also conducted experiments by removing grayscale 

images and attention. ‘No inverse grayscale image’ 

means the model only inputs reference images and test 

images. ‘Single attention’ means that in the dual 

attention module, the input for dot product and 

upsampling is provided by itself, and everything else is 

consistent with the final model.  

Table 6 Main parameters on ChiSig dataset (%) 

Model Name FRR FAR ACC Notes 

IDN (Baseline) 10.46 17.91 84.82 
Original 
implementation 

IDN (Channel 
Fusion) 9.61 18.97 85.72 

+Feature 
combination 

IDN (Channel 
Fusion + Attention) 

7.82 14.27 88.96 
+Attention 
mechanism 

OURS (No 
Grayscale Inversion, 
No Attention) 

21.91 17.26 88.09 Basic version 

OURS (No 
Grayscale Inversion, 
Single Attention) 

15.59 16.30 89.20 +Attention layer 

OURS (Grayscale 
Inversion, No 
Attention) 

6.90 17.18 92.14 
+Image 
preprocessing 

OURS (Full Model) 5.34 5.34 95.23 
Complete 
configuration 

For no inverse grayscale image, after introducing single 

attention, the accuracy increased by 1.11%, while 

introducing inverse grayscale images increased the 

accuracy by 4.05%. Experimental results show that the 

addition of attention and inverse grayscale images is 

feasible, and the addition of inverse grayscale images has 

a greater improvement effect than the addition of 

attention. 

This ablation experiment proves the rationality of the 

proposed method. In addition, to facilitate future 

researchers to compare using FRR and FAR metrics, this 

paper also calculated the FRR and FAR metrics of our 

proposed model on the ChiSig dataset, as shown in Table 

6. 

3.5 Cross-Language Experiment 

Furthermore, this paper also conducted cross-language 

tests. In this work, CEDAR, BHSig-B, BHSig-H, and 

ChiSig, four different languages, were used for testing. 

This paper trained the model using the training set of one 

language and tested it on the training sets of the 

remaining languages. For example, this paper trained the 

model on the BHSig-B training dataset and tested it on 

the BHSig-H test dataset. The division of training and 

test data is the same as in the experiments on each 

independent dataset. Table 7 shows the accuracy of 

cross-language tests, where rows correspond to training 

languages and columns correspond to test languages. 

Table 7 shows that cross-language signature verification 

performance rapidly declines. This paper believes that 

the essence of an offline signature verification system is 

style feature matching. 

Each person’s signature is closely related to their writing 

style habits, and different language styles have different 

writing habits, leading to the inability of the current 

dataset’s learned style to be applied to other datasets. The 

accuracy of the BHSig-B dataset and BHSig-H dataset is 

higher than other datasets, possibly because the writing 

styles of Hindi and Bengali are more similar. 

Table 7 Cross-language test (%) 

Training Set → Test 
Set 

CEDAR 
BHSig-
B 

BHSig-
H 

ChiSig 

CEDAR 100.00 48.76 49.89 57.48 

BHSig-B 64.86 95.61 82.79 63.71 

BHSig-H 50.11 86.27 95.70 20.00 

ChiSig 54.60 70.02 55.37 95.23 

4. CONCLUSION 

This paper proposes a novel offline handwriting 

verification model, for handwritten signature 

verification in writer-independent scenarios. This model 

first extracts features through two layers of 

convolutional networks and a dual attention module, 

then performs feature fusion through channel fusion, and 

finally uses the ACMix discriminative module to 

determine the similarity of multiple images. It uses an 

inverse supervision mechanism and a dual attention 

mechanism to solve the problem of insufficient detailed 

feature information in traditional channel fusion 

methods. In testing, by inputting reference signature 

images and test signature images, the model directly 

outputs whether the test signature is genuine or forged. 

Experimental results demonstrate the advantages and 

potential of the proposed method. Future work will focus 

on research into cross-language signature verification 

and recognition. 
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