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ABSTRACT

Shapley values for feature attribution often suffer from high variance, requiring thousands of model evaluations.
We introduce Orthogonal Permutation Sampling (OPS), a method that achieves provable variance reduction
throughexact position stratification, antithetic permutation coupling, and control variates. We prove finite-sample
variance dominance over Monte Carlo estimators and show that OPS induces non-positive covariance under
submodularity. Empirical results across six benchmarks demonstrate 5—26x variance reduction for typical
dimensions (n = 10-20) and 67% for n = 50, achieving 2—5x lower MSE than KernelSHAP at equivalent budgets,
while adding only 7% runtime overhead (all p< 0.001). The framework is model-agnostic, maintains exact
unbiasedness, scales linearly to n = 100, and provides production-ready, reliable feature attributions.This research
addresses the critical need for low-variance and reliable Shapley value estimation, which current methods fail to
provide in practical, high-stakes settings.
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1. INTRODUCTION computational burden has motivated Monte Carlo
(MC) estimation approaches (Castro et al., 2009;
Strumbelj& Kononenko, 2010). While unbiased and

Shapley values (Shapley, 1953) provide a principled conceptually simple, naive permutation sampling

1.1 Background and Motivation

allocation of a cooperative game's value among exhibits high variance, leading to unstable
players and have emerged as the leading framework explanations and wide confidence intervals, a critical
for local model interpretability in machine learning limitation in high-stakes domains such as healthcare
(Lundberg & Lee, 2017; Molnar, 2020). In predictive diagnostics, financial lending, and autonomous
modeling, players correspond to input features, the systems where regulatory compliance demands

game is defined by the prediction function evaluated reliable feature attributions (Rudin, 2019).
on masked feature subsets, and the Shapley vector
quantifies how each feature contributes to a single
prediction. Computing exact Shapley values is
computationally intractable for even moderate input

Recent advances in variance-reduced Shapley
estimation have explored several directions: (i)
stratified sampling for data valuation (Wu et al.,
2023), (ii) differential matrix approaches exploiting
pairwise feature correlations (Pang et al., 2025), (iii)
improved weighting schemes in KerneISHAP (Olsen

dimensions n, requiring evaluation of either 2”n
coalitions or enumeration of n! permutations. This

Online: https://doi.org/10.64680/jisads.v3i2.44


mailto:yash3483@gurukultheschool.com
mailto:tranav4464@gurukultheschool.com
mailto:anuragsinha257@gmail.com

Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.2, (2025) PP. 10-27

Naive Monte Carlo OPS (Stratified Sampling)
(High Variance, Wide Cl) {Low Variance, Narrow Cl)
25 1
Variance: 0.0194 : | == True Shapley Value 20,0 4 | Variance: 0.0009 - : == Thue Shapley Value
Cl Width: 0.546 l — Mean Estimate ' Cl Width: 0.116 I — Mean Estimate
20 | 95% Cl 175 4 T 95% Cl
I I
I 15.0 I -
= | > I
G154 I g 125 1 1
g - - g I
o ] | 7 10.0 | 1
L0 4 | o 1
= | = 754 I
| I
| 5.0 1
5 - | |
| 2.5 - Iy | 1
iy ¥ ' || 1. e -
0l ‘ . . | ‘ . | . 0.0 1 ‘ l . ;
01 02 03 04 05 06 07 08 09 0.40 0.45 0.50 055 0.60
Shapley Value Estimate Shapley Value Estimate
Variance Reduction: 22.2x
Figure 1.1: Motivation Diagram
&Jullum, 2024), and (iv) leverage score sampling using maintains  exact unbiasedness, imposes minimal
matrix approximation theory (Musco et al., 2025). computational overhead (7% average), and provides
However, these methods face significant limitations. Data formal ~variance guarantees under mild regularity
. . . e conditions.
valuation techniques stratify over coalition sizes and do not
directly extend to feature attribution under arbitrary - ~
prediction functions. Differential matrix methods require B o
. . . . . . liminates between-stralum variance
solving n X n linear systems at each iteration, incurring Theorem 3 \arior = Gatie] Ginn o

¥_2.5x raduction _J

\(

J

O(n®) computational overhead. KernelSHAP's accuracy
Level 2: Antithetic Permutation Coupling
PFair complementary coalitions (S, NVi}\S)

depends critically on heuristic coalition sampling strategies
Induces negative correlation under submadularit:
that can be unstable for n > 20 features. Leverage score Thesiem 2. oot A1) 20
. . . . . . . \_ ¥ 1.5-2x additional )
sampling is limited to certain models due to its reliance on

Level 3: Control Variates (Optional)

Use linearized model as contral functian

matrix computations, and no existing approach fully
ey . . . . Onthegonal ta stratification and caupling
utilizes the inherent stratification of permutation-based Effecive when pligl = 0.5

Model-agnostic » Exact unbiasedness = 7% overhead

Shapley values. [

Combined Effect: 5-67x Variance Reduction ]

1.2 Problem statement

. . Fi, 1.2: OPS F k Overvi
Our work addresses a fundamental gap in the literature: ‘gure ramework Lverview

existing variance reduction techniques fail to leverage

1.3 Major contributions
the position-based stratification structure that emerges

naturally from the permutation representation of The first contribution is the development of a
Shapley values. We observe that each feature's Shapley comprehensive variance-reduction framework integrating
value can be expressed exactly as an average over its three orthogonal techniques. Position stratification enables
position (rank) in random permutations, partitioning the exact variance decomposition and eliminates all between-
permutation space into n exhaustive and mutually stratum variance (Theorem 1). Antithetic coupling
exclusive strata. This one-dimensional structure—unique guarantees non_positive covariance under Submodu]arity
to the permutation formulation—enables exact variance (Theorem 2). Additionally, control variates are constructed
decomposition and optimal budget allocation, which from linearized model surrogates using explicit algorithmic
coalition-based stratification cannot achieve due to procedures.

misalignment with the Shapley expectation.
The second contribution introduces Neyman-optimal

Furthermore, by introducing antithetic couplings via budget allocation (Corollary 1) to minimize total variance,
permutation reversal (pairing complementary coalitions to supported by a two-phase pilot procedure for estimating
induce negative correlation) and orthogonal control unknown stratum variances. Computational analysis
variates (using linearized model surrogates), we develop a establishes an overall complexity of O(nL-T eval), and
cumulative variance reduction framework achieving 5-67x% empirical studies show that the method incurs Only a 7%
improvements across diverse problems. Our approach runtime overhead relative to naive Monte Carlo sampling.
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The third contribution consists of validation across six
diverse benchmarks—covering Iris, California Housing,
Adult Income, MNIST-PCA, synthetic SVM, and non-
submodular games—spanning model sizes from n = 4 to
100. Using bootstrap confidence intervals and paired t-
tests, the framework delivers 5—26x variance reduction for
n = 10-20, 67x reduction for n = 50, and 2—5% lower MSE
than Kernel SHAP at equivalent computational budgets (all
p <0.001).

The fourth contribution is a production-ready, model-
agnostic framework that preserves exact unbiasedness and
scales linearly up to n = 100. The method integrates
seamlessly with SHAP and is accompanied by deployment
guidelines, including method-selection criteria, cost-
benefit analysis, and failure-mode characterization for
high-stakes applications requiring reliable explanations
with tight confidence intervals.

1.4 Paper Organization

The remainder of this paper is organized as follows.
Section 2 reviews related work, positioning OPS relative to
recent advances in variance-reduced Shapley estimation
and interpretable machine learning (2020-2025). Section 3
establishes the theoretical foundations including notation,
rank-conditional representation, and formal variance
analysis. Section 4 presents algorithmic implementations
with complexity analysis. Section 5 describes our
comprehensive experimental setup across six diverse
benchmarks. Section 6 presents empirical results with
statistical validation and state-of-the-art comparisons.
Section 7 discusses practical implications, theoretical
insights, limitations, and future research directions, and
concludes with a summary of key findings and their
significance for interpretable machine learning.

2. LITERATURE REVIEW
2.1 Shapley Value Foundations

Shapley's axiomatic solution (Shapley, 1953) uniquely
satisfies efficiency, symmetry, null player, and
additivity—properties that make Shapley values attractive
for ML interpretability (Molnar, 2020). However, exact
computation is #P-complete (Deng & Papadimitriou,
1994), requiring evaluation of 2" coalitions or n!
permutations. Sampling-based approximations (Castro et
al., 2009; Strumbelj& Kononenko, 2010; Maleki et al.,
2013) provide unbiased estimates with O(1/VL) error
bounds but suffer from high variance, often requiring L >
5000 samples for acceptable confidence intervals.

2.2 SHAP and KernelSHAP

SHAP (Lundberg & Lee, 2017) unified several
interpretability methods under the Shapley framework.
KernelSHAP reformulates Shapley estimation as weighted
least-squares regression:

Equation 1:

ming y  w(S D) ~go— Y b

SEN i€es

where 7(|S]) is a kernel weight. Olsen and Jullum (2024)
improved the weighting scheme, achieving 5-50%
variance reductions. However, KernelSHAP's accuracy
depends on coalition sampling strategy and becomes
unstable for n > 20 due to ill-conditioned regression.

2.3 Recent Variance Reduction Techniques (2023—
2025)

Stratified Sampling for Data Valuation: Wu et al. (2023)
developed VRDS, stratifying over coalition sizes k € {0,
..., m—1} for data valuation, achieving 3—-10x variance
reductions. However, VRDS addresses data valuation
(pricing training examples via model retraining), not
feature attribution (explaining predictions via forward
passes). Coalition-size stratification does not align with the
permutation-based Shapley expectation for
features.Differential Matrix Approaches: Pang et al. (2025)
estimate pairwise Shapley differences Agj, then recover
individual values by solving:

Equation 2:
Ap=b>b

where A is an n X n constraint matrix. This exploits feature
correlations but requires O(n®) operations per instance,
dominating runtime for n > 20 unless T eval> 1
second.Leverage Score Sampling: Musco et al. (2025)
importance-sample coalitions proportionally to leverage
scores, providing g-approximation guarantees:

Equation 3:
" ¢approx _ ¢true ”23 c " ¢true "2

using O(n/e? log n) samples. However, this requires matrix
structure  (regression  formulation) and  provides
approximate rather than exact unbiasedness.

2.4 Recent Advances in Explainable AI

TreeExplainer (Lundberg et al., 2020) computes exact
Shapley values in O(TL?D) time for tree ensembles but is
model-specific. FastSHAP (Jethani et al., 2021) trains
neural networks to predict Shapley values, amortizing cost
but requiring expensive pretraining (10*—10° evaluations)
and retraining when models change.
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Table 1: Comparative Analysis of Variance Reduction Methods

Method Stratification Coupling Model Scope
VRDS Coalition size | None Data valuation
(Wu 23)

Diff. Matrix None Pairwise Black-box
(Pang 25)

Leverage Importance None Matrix approx.
(Musco 25)

KernelSHAP Heuristic None Black-box
(Olsen 24)

OPS Position r; Antithetic = Black-box
(Ours)

2.4.1 OPS vs. Recent Variance Reduction Methods

To contextualize OPS among recent variance reduction
methods, we compare it with state-of-the-art techniques
from 2023-2025. Table 1 contrasts stratification
approaches, coupling mechanisms, model applicability,
computational complexity, and theoretical guarantees.
OPS uniquely leverages position-based stratification,
inherent to permutation-based Shapley
representationswhile maintaining formal variance bounds
across model-agnostic settings.

Novelty

Stratification: OPS stratifies over feature positions in
permutations—the natural structure of the permutation-
based Shapley formula. VRDS stratifies over coalition
sizes, which misaligns with permutation expectations and
cannot eliminate between-stratum variance for feature
attribution.

Multiple mechanisms: OPS combines three orthogonal
techniques (stratification, antithetic coupling, control
variates). Other methods use single mechanisms.

Formal guarantees: OPS provides exact variance
decomposition (Theorem 1) and non-positive covariance
under submodularity (Theorem 2). VRDS and
KernelSHAP+ report only empirical gains.

Efficiency: OPS maintains O(nL-T_eval) complexity with
7% overhead. Pang et al. adds O(n?), limiting scalability.

Model-agnostic: OPS requires only black-box evaluation.
Musco et al. requires matrix structure;
TreeExplainer/FastSHAP are model-specific.

2.5 Research question

Existing methods face three limitations OPS addresses:

(1) limited generality—data valuation methods don't extend
to feature attribution; tree methods are model-specific;

(i1) weak guarantees—most report empirical reductions
without formal bounds;

(iii) incomplete validation—tested on single datasets or
synthetic games. OPS exploits position-based stratification
(unexploited by prior work), provides formal variance

Limitation
Feature attribu-
tion not sup-
ported

O(n®) overhead

Variance Bound
Empirical 3—10x

Complexity
O(mL-T retrain)

O(n®*+nL-T eval) None

O(n log(n)/e*> = e-approx (Eq.3) | Requires struc-

L-T eval) ture;  approxi-
mate
O(L-T_eval) Empirical 5— | Unstable n>20;
50% biased

O(L-T_eval) Theorems 1 & 2 = 7% overhead

bounds, and validates across six benchmarks (n =4 to 100,
three model classes, submodular and non-submodular
games) with rigorous statistics (p < 0.001).

3. METHODS

3.1 Proposed Method

Let N= {1, 2, ..., n} denote the set of features, and let v: 2N
— R be a characteristic function assigning a real-valued
payoff to each coalition S € N.

In machine learning interpretability, v represents a
prediction function evaluated on masked feature subsets.
Definition 1 (Marginal Contribution). For any coalition
S € N and feature i€ N \ S, the marginal contribution of i
to S is:

Equation 4:

Av(S):=v(SU{i}) —v(S)
where Aiv(S) € R measures the change in prediction when
feature 1 is added to coalition S.

Definition 2 (Shapley Value - Permutation Form). The
Shapley value of feature i is:

Equation 5:

i(v): = Equnira,y [2v (P ()]
where I1, is the set of all n! permutations of N, m: N — {1,
..., n} maps each feature to its position, and Pi(w) := {j EN

: (j) <m(i)} is the set of predecessors of i in permutation
.

This is equivalent to the combinatorial formula:
Equation 6:

[S1!T(n=1S|-1)!
n!

¢:i(v) =

SEN\{i}
Definition 3 (Monotonicity and Submodularity). A
characteristic function v is monotone if v(S) < v(T) for all
S € T € N, and submodular if Ajv(S) > Ajv(T) for all S €
T € N\ {i}. Submodularity captures diminishing marginal
returns—many ML  models exhibit approximate
submodularity.

AL'V(S)
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Definition 4 (Feature Rank). For permutation m and
feature i, the rank of i is ri(n) := [Pi(m)| € {0, 1, ..., n—1}, the

number of features preceding i in 7.

Lemma 1 (Rank-Conditional Decomposition). The

Shapley value decomposes as:

Equation 7:
n-1
1
AOEEDY
k=0
where e = E[Av(S) | |S| = k] is the

Uy

random k-subsets S € N\ {i}.

Proof.

By Equation 5,
Conditioning on rank ri(m):

0i(v)

$:i(v) = Z E[A;v(Py () | 7i(m) = k] - P(r;(m) = k)
k=0

For uniformly random =, feature i appears at position k+1

with probability 1/n.

Given ri(m) = k, the predecessor set Pi(n) is a uniformly

random k-subset of N\ {i},

So E[Aiv(Pi(n)) | ri(m) = k] = . Substituting P(ri(n) = k) =

1/n yields Equation 7.

Definition 5 (Within-Stratum Variance). For each rank

k, define ci? := Var(Aiv(S) | [S| = k).

Remark. This decomposition partitions the permutation

space into n exhaustive, mutually exclusive strata with
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Figure 3.3: Antithetic Coupling Mechanism

uniform probability 1/n each. This one-dimensional
stratification  structure—unique to the permutation
representation—enables exact variance decomposition
(Theorem 1).

Theorem 1 (Unbiasedness and Variance
Decomposition). For any allocation {Li}w-o"" with X Ly =
L:

(a) Unbiasedness: E[¢i™] = ¢i(V)
(b) Variance Formula:

Equation 8:

= 5
TPSY _ %k

Var($f$) = — ; -

(c) Comparison to Naive MC: Let @M be naive Monte

Carlo using L i.i.d. permutations. Then:

Equation 9:

11 n—1 1 n—1

IMCN _ —[_ 2., -

Var(@') —L[n; o+
With equal allocation Ly = L/n:

(e — d:(v)?]

k=0

Equation 10:

n-1 n-1
Var(@%) = ﬁkz of = Var(@) - %kz (= $i(9))?
Therefore, stratification strictly reduces variance whenever
stratum means {ji} vary, eliminating all between-stratum
variance.

Proof Sketch. (Complete derivations in Appendix)

(a) By construction, E[@i*] = (1/n) Zx E[my]. Since each m;
in stratum k is i.i.d. from Aiv(S) | |S| = k, we have E[my] =
t. ThusE[@i™] = (1/n) Zk i = @i(v) by Lemma 1.

(b) Samples are independent across strata, so Var(gi™) =
(1/n?) Z¢ Var(my). Within stratum k, the Ly samples are

ii.d. with variance oy? vyielding Var(mi) = o /L.
Substitution gives Equation 8.

(c) For naive MC, each permutation 7 yields Aiyv(P;i(x)) with
total variance decomposable via law of total variance into
within-stratum variance (1/n) Xy ci? and between-stratum
variance (1/n) Zx (i — ¢i(v))?. Division by L gives Equation
9. Setting Ly = L/n in Equation 8 yields Equation 10.
Corollary 1 (Neyman-Optimal Allocation). The
allocation minimizing Var(¢i™) subject to Xy Ly = L is:

Equation 11:
Ok
'S
Jj=0

Ly =1L
* %

yielding minimum variance:

Equation 12:

=
N

W@l =53 )
Proof.Lagrangian optimization: HA{L«}, L) = (1/n?) X
(o ?/Ly) + MZk Ly — L). Setting 0%/0L« = 0 gives Ly =
oi/(nVA). Applying constraint ¥, L = L yields VA = (1/nL)
Y oj, giving Equation 11. Substituting into Equation 8
yields Equation 12.

2

Definition 6 (Antithetic Coalition Pair). For stratum k,
construct negatively correlated pairs: sample S ~ Unif({T
C N\ {i} : [T| =k}), then construct T = (N \ {i}) \ S with
|T|=n— 1 — k. This pairs stratum k with stratum n—1-k.

Theorem 2 (Nonpositive Covariance for Submodular
Games). Let v be monotone submodular. For antithetic pair
(S, T)with SS N\ {i}, |S|=k, T=N\{i})\S:

Equation 13:

Cov(A;v(S),Av(T)) <0
Consequently:

Equation 14:

Av(S) + Av(T) 1
Var(f) < 3 [Var(A;v(S)) + Var(A;v(T))]
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Proof Sketch. (Complete proof in Appendix A) By
submodularity, Aiv(S) > Aiv(S') for S € S' (diminishing
returns).

For complementary coalitions S and T=(N\ {i})\ S, as |S|
increases (k grows), Ayv(S) decreases while Aiv(T)
increases (T shrinks). This anti-monotonic relationship
induces negative covariance.

For any X, Y with Cov(X,Y) < 0: Var(X+Y)/2) =
(1/4)[Var(X) + Var(Y) + 2Cov(X,Y)] < (1/4)[Var(X) +
Var(Y)], giving Equation 14.

Remark (Hypothesis 1 - Unproven Conjecture). While
Theorem 2 assumes monotone submodularity, our
empirical results (Section 5.7) show OPS achieves 6.8%
variance reduction for non-submodular games. We
conjecture  this stems from approximate local
submodularity in ML models, but formal characterization
requires future work.

3.5 Control Variate Theory

Let g be a linearized approximation to v around baseline
Xo:

Equation 15:
of

IS =v@) + ) o
]

jes

lx, (xj — X0,5)

where g is the characteristic function evaluated using the
linear approximation, f is the underlying prediction
function, and Xo is the baseline feature vector. For additive
game g, Shapley values are analytically computable: ¢i(g)
= (6f/axi)|xo (Xi - Xo,i).

Remark (Hypothesis 2 - Unproven Conjecture). Control
variate effectiveness depends on correlation p(v, g)
between the true characteristic function v and its linear
surrogate g. For highly nonlinear models, first-order
linearization may yield p < 0.5, providing minimal benefit.
Higher-order Taylor approximations or kernel surrogates
may improve performance, but this requires empirical
validation in future work.

3.6 Algorithmic Implementation

We present the computational implementation of our
theoretical framework from Sections 3.1-3.5. Table 2
summarizes  three  algorithmic  variantsPosition-
Stratification (PS), Orthogonal Permutation Sampling
(OPS), and OPS with Control Variates (OPS-CV)each
adding orthogonal variance reduction mechanisms. All
variants maintain O(nL-T eval) complexity while trading
simplicity for variance reduction. The table indicates which
mechanisms are active in each variant and provides
deployment recommendations.

3.6.1 Position-Stratified Estimation

Algorithm 1: Position-Stratified Shapley Estimation (PS)
def pos_strat_shap(i, v, N, L, alloc=None):
n = len(N)
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N_i=N- {i}
if alloc is None:
alloc = {k: L // n for k in range(n)}
strata_means = []
for k in range(n):
Lk = alloc[k]
samp = []
for _ in range(Lk):
S = set(np.random.choice(
list(N_i), size=k, replace=False))
m=v(s | {i}) - v(S)
samp.append(m)
strata_means.append(np.mean(samp))
return np.mean(strata_means)

3.6.2 Neyman-Optimal Allocation

Algorithm 2: Two-Phase Neyman Allocation

def neyman_opt_alloc(i, v, N, L, p_frac=0.2):
n = len(N)

N_i=N- {i}

Lp = int(np.ceil(p_frac * L))
Lm =L - Lp

pps = max(1, Lp // n)

est_s =[]

for k in range(n):

samp = []

for _ in range(pps):

S = set(np.random.choice(list(N_i), size=k, replace=False))
m=v(s | {i}) - v(S)
samp.append(m)

std = np.std(samp, ddof=1) if len(samp) > 1 else 1.0
est_s.append(std)

est_s = np.array(est_s)
s_sum = np.sum(est_s)
alloc = {}

for k in range(n):
alloc[k] = pps + int(Lm * est_s[k] / s_sum)

return alloc
3.6.3 Orthogonal Permutation Sampling

Algorithm 3: OPS with Antithetic Coupling

def orth_perm_sampling(i, v, N, L, alloc=None):
n = len(N)
N_i=N- {i}
if alloc is None:
alloc = {k: L // n for k in range(n)}
strata = {k: [] for k in range(n)}
for k in range((n - 1) // 2 + 1):
k2 =n-1-k
if k == k2:
for _ in range(alloc[k]):

Table 2: Summary of Algorithmic Variants

Algorithm Techniques Complexity

PS (Alg 1) Stratification O(nL-Teyar)

OPS (Alg3) | Stratification + Anti- = O(nL" Tevar)

thetic
OPS-CV (Alg = All three mecha- O(nL:Teval
4) nisms nLpitor)

+

S = set(np.random.choice(
list(N_i), size=k, replace=False))
m=v(s | {i}) - v(S)
strata[k].append(m)
else:
pairs = alloc[k] // 2
for _ in range(pairs):
S = set(np.random.choice(
list(N_i), size=k, replace=False))
T=Ni-S
ml = v(s | {i}) - v(S)
m2 = v(T | {i}) - v(T)
strata[k].append(ml)
strata[k2].append(m2)
s_means = [np.mean(strata[k]) for k in range(n)]
return np.mean(s_means)

3.6.4 Control Variate Integration

Algorithm 4: OPS with Control Variate (OPS-CV)

def ops_cv(i, v, g, N, L, phi_g, alloc=None, seed=None):
if seed is not None:
np.random.seed(seed)
phi_v = orth_perm_sampling(i, v, N, L, alloc)
if seed is not None:
np.random.seed(seed)
phi_g_ = orth_perm_sampling(i, g, N, L, alloc)
beta = 1.0
phi_cv = phi_v - beta * (phi_g_ - phi_g)
return phi_cv

3.6.5 computational complexity
3.6.5 computational complexity

Time complexity: algorithm 1 requires o(l) coalition
evaluations per feature, totaling o(nl-teva) Where teva is
model evaluation time. Algorithm 2 adds o(nlpiior*teva) for
pilot estimation. With memoization of repeated coalitions
across features, practical cost approaches o(1-teva) for small
n. Algorithm 4 doubles evaluations but maintains o(nl-teva)
asymptotic complexity.

Space complexity: o(nl) to store all samples, or o(n) with
streaming computation where only stratum means are
retained.

Parallelization: features are independent; strata within
features are independent. Both levels admit embarrassingly
parallel computation with near-linear speedup.

Variance Bound Use Case

Theorem 1 (eliminates between- Baseline variance re-

stratum variance) duction

Theorem 1 + 2 (non-positive co- = Standard use (n > 10)

variance)

Theorems 1, 2 + CV theory Differentiable models
(n>10)
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4. RESULTS AND DISCUSSION
4.1 Experimental Setup

The experimental evaluation is conducted across six
diverse benchmarks representing three major model
classes: tabular (Iris, California Housing, Adult Income),
vision-derived ~ features =~ (MNIST-PCA), synthetic
classification (SVM), and strategic decision-making
environments  (non-submodular  games).  Feature
dimensions range from n = 4 to n = 100, enabling
assessment of scalability under varying complexity levels.
All models are trained using standard preprocessing
pipelines and optimized hyperparameters to ensure stable
and comparable performance across datasets.

To ensure a fair comparison, all estimation methods
operate under identical computational budgets, with the
number of model evaluations treated as the primary cost
metric. Each experimental configuration is repeated over
multiple random seeds, and evaluation metrics include
variance, mean squared error (MSE), and confidence
interval width. Bootstrap resampling (5,000 iterations) and
paired t-tests are applied to assess statistical significance
and quantify estimator robustness.

The implementation follows the derived O(nL-T eval)
computational scaling, with stratified sampling, antithetic
coupling, and control variates executed according to the
proposed variance-reduction framework. Pilot-phase
sampling is used where necessary to approximate unknown
stratum variances for Neyman allocation. All experiments
are executed on a workstation equipped with a multi-core
CPU and GPU acceleration, ensuring consistent runtime
measurement and reproducibility.

KernelSHAP and naive Monte Carlo serve as comparative
baselines. For each dataset, performance is evaluated
across multiple sample budgets to analyze efficiency gains
under both low-budget and high-budget regimes. Results
are aggregated across benchmarks to provide a
comprehensive assessment of variance reduction,
estimator accuracy, and computational overhead under
realistic deployment conditions.

A.1.1 Unbiasedness
By construction, @™ = (1/n) X my where my = (1/Ly) &
m;®. Taking expectation:

e 1T
BB =) Elml
k=0

Since each mi® is i.i.d. from Aiv(S) | [S| = k with mean py:

E[m;] E[—Z m(k)

Z Hr = U

ThereforeE[¢i™] = (1/n) Zx p = ¢i(v) by Lemma 1.
A.1.2 Variance Formula

Since samples are independent across strata (Cov(in;, my)
=0 forj #k):

=
7?2 Var(m7,)
k=0

Within stratum k, the L samples are i.i.d. with variance oi*:

n-1
Var(¢pfS) = Var(%Z my) =
k=0

2
o
(k))—— Ly Gk—L_k

k

Var(m?,) = Var(— Z

Substituting: Var(¢i™) = (1/n?) Zi (oi?/Ly).
A.1.3 Comparison to Naive MC

For naive MC, each permutation 7t yields Aiv(Pi(r)). By law
of total variance, conditioning on rank ri(7):

Var(4v(P,(m))) = E[Var(4v(P,(m)) | ()] + Var (E[4v(P,(1)) | T:(m)])
Within-stratum variance:

-1 n—

H

:I»—‘

E[Var(4;v(P;(n)) | ry(m))] =
k=0 k=0
Between-stratum variance: Since E[Aiv(Pi(n)) | ri(m) = k]
= W and rj(w) ~ Uniform({0, ..., n—1}):

Var(E[Aw(P0) | 7)) = Var ) == Y Gt = $i(0)?
k=0
Therefore Var(giM®) = (1/L)[(1/n) Xk o + (1/n) Zk (i —
Pi(v))’].

With equal allocation Ly = L/n, we have Var(gi™) = (1/nL)
Y, 0. Taking the difference:

n-1

~ - 1
Var(@)€) - Var@$) =— > (u

k=0

— $i())? 2 0
Thus stratification eliminates the between-stratum variance
component.

A.2 Proof of Theorem 2 (Nonpositive Covariance for
Submodular Games)
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A.2.1 Setup

Let S be a uniformly random k-subset of N \ {i}, and T =
(N'\ {i}) \ S its complement with |T| =n — 1 — k. Define X
=Av(S)and Y = Aiv(T). We show Cov(X, Y) <0.

A.2.2 Anti-Monotonic Relationship
By submodularity, for any S' € S" € N\ {i}:
AiU(S’) = AL'U(S”)

Consider coalitions ordered by size. As |S| increases from
0 ton—1I:

X = Aiv(S) decreases (by submodularity)

IT|=n—1—|S|decreases, so Y = Aiv(T) increases (smaller
coalitions have larger marginals)

This anti-monotonic relationship (X decreases while Y
increases) induces negative correlation.

A.2.3 Formal Argument

For complementary pairs (S, Ti) and (Sz, T2) where Si €
Sz, we have T2 € Ti. By submodularity:

Aiv(S1) > Aiv(S2) (X decreases)
Aiv(T2) > Aiv(Ty) (Y increases in opposite direction)

By Chebyshev's sum inequality for oppositely monotone
sequences:

E[XY] < E[X] - E[Y]
Therefore Cov(X, Y) = E[XY] — E[X]E[Y] <0.
A.2.4 Variance Bound
Given Cov(X, Y) <0:
X+
2

Var(: y) = %[Var(X) +Var(Y) + 2Cov(X,Y)] < %[Var(X) +Var(Y)]

For independent sampling, variance would be (1/4)[ Var(X)
+ Var(Y)]. When Var(X) = Var(Y) (symmetric strata):

X+Y
2

Var( ) < %Var(X)

Thus antithetic coupling reduces variance by at least 2x
compared to independent sampling.

A.3 Proof of Corollary 1 (Neyman-Optimal Allocation)

A.3.1 Lagrangian Optimization

Minimize Var(@i™) = (1/n?) Zi (01*/Ly) subject to X Ly = L.
Form the Lagrangian:

n-1 2 n-1
1 o
LD ==Y 7+, Li—1D
k=0 k k=0

A.3.2 First-Order Conditions

Taking 0#/0L« = 0:

2
o Oy
n2L2

nva

Applying the budget constraint Zx Ly = L:

n-1 1n—l
0,

Y oo VI=—Y g
A nlL £

k=0 j=0

Substituting back:

L, = i —
k= 1 - n-1 5
c—_) . . j=0

n nLZJ oj j J

This is Neyman allocation: budget proportional to within-
stratum standard deviations.

A.3.3 Minimum Variance

Substituting L*, into the variance formula:

n-1 n-1 n-

A 1 o? 1 1 e
V@ =) e mm) %), = Qo
= k=0

1
k=0 Z, g k=0 j=0

SUMMARY

Theorem 1 establishes that position stratification
eliminates between-stratum variance (1/(nL)) Xk (. —
¢i(v))? while maintaining exact unbiasedness.

Theorem 2 proves antithetic coupling induces non-
positive covariance under submodularity via anti-
monotonic relationship, yielding at least 2x variance
reduction when variances are equal.

Corollary 1 derives Neyman-optimal allocation
proportional to ok, achieving minimum variance
(1/(n2L))(Z«

We evaluate OPS across six benchmarks spanning n =4 to
100 features, covering linear, tree-based, and neural
network model

Key Details: MNIST reduced to 50 dimensions via PCA
(95% variance).

Non-submodular game: v(S) = |U;€S Cj| — 0.1|S|* violates
Theorem 2 assumptions.
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Table 3: Benchmark Datasets and Models (All models trained on training set only. Shapley values computed on held-out test set)

Dataset n Samples  Task Model Purpose
Iris 150 Binary Class.  Logistic Regression Low-dimensional baseline
California Housing 8 20,640 Regression Random Forest (100 trees)  Tree-based, medium n
Adult Income 14 48,842 Binary Class.  XGBoost (100 trees) Real-world, high n
MNIST-PCA 50 60,000 10-class Neural Net (2x128 hidden)  Deep learning, very high n
Synthetic-SVM 100 10,000 Binary Class. ~ SVM (RBF kernel) Scalability test
Non-Submodular 10 — Coverage Exact game Robustness test
4.2 Baseline Methods Implementation: Python 3.10, NumPy 1.24, SHAP 0.42.
Hardware: Intel i7-1360P, 16GB RAM, single-threaded.
MC: Naive permutation sampling (Strumbelj& OPS uses Neyman allocation (Lyie = 0.2L); PS uses equal
Kononenko, 2010). allocation.
KernelSHAP: Weighted regression (SHAP library v0.42, Research Questions:
default parameters). Q1: Does OPS _achieve 5-26x% variance. reduction?
TreeExplainer: Exact Shapley for tree models (oracle for Q2: Does OPS achieve lower MSE than baselines at: equal

validation).

4.3 Evaluation Protocol

All datasets use stratified 80-20 train-test splits. Models are
trained on the training set; all Shapley evaluations occur on
the held-out test set. "Repetitions: 200 trials" means 200
independent runs with different random seeds, each on a
randomly selected test instance.

Ground Truth: Exact enumeration for n < 10; high-budget
MC (L =10,000) for n > 10.

Design: Sample budgets L € {100, 500, 1000, 2500,
5000}. Repetitions: 200 trials (n < 14), 50 trials (n > 50).
Five representative features per dataset.

Metrics:

MSE: (1/R) Z; (¢i" — ¢y)?

Variance: (1/(R-1)) Z; (¢i® — ¢;)?

VRF: Var(MC) / Var(OPS)

CI Width: 1.96\Var/\R

Runtime: Wall-clock seconds (single-threaded)

Statistical Tests: Paired t-tests (MC vs. OPS) with
Bonferroni correction (o = 0.05/6). Bootstrap 95% Cls
(10,000 resamples) on variance differences.

Iris Dataset (n=4): Estimator Distributions

budgets?
Q3: Does OPS work for non-submodular games?

5.1 IMPLEMENTATION
5.1 Low-Dimensional Validation (Iris, n=4)

Table 4: Iris Dataset Results with Statistical Significance

Method MSE Variance  Runtime p-
(x10%)  (x107) (s) value
MC 4.80 2.20 0.42 —
PS 4.90 2.18 0.44 0.324
OPS 4.70 2.15 0.45 0.182
OPS-CV 4.68 2.14 0.47 0.165
KernelSHAP 5.20 2.35 0.38 —
SHAP 5.10 2.28 0.40 —

Interpretation: For n=4, variance reduction is modest (2—
3%) as expected from theory. All estimators achieve
unbiasedness (MSE < 5x107°). Improvements are not
statistically significant due to limited number of strata.
Runtime overhead is negligible (7%).

Computational Overhead

OPS Overhead: 7.1%0.47s
= Var: 2.20e-03 Var: 2.18e-03 Var: 2.15e-03 Var: 2 lﬂe—OS‘ |var: 2.35e-03 0.44s 8-45s
S 0.65 o 0.42s
5 o) 0.4 -
2 o 1 T : 0.38s
£ o060 -1 -1 _
A )
[=] b1
<
L oss o 0.3+
g g
E &
i &«
& o050 = - - = nE»
P £ 02 4
E=]
= 5
© 0.4 S
& 045 2
>
2 1
S 0.40 —4 e 0.1
= I i o
5 o
0.35 o
. T : : 0.0 . . : . :
<« £ & fou o & <+ & o &
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>3 o
& @

Figure 5.1: Low-Dimensional Baseline (Iris, n=4)
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5.2 Medium-Dimensional Performance (California Housing, n=8)
Table 5: California Housing Variance Reduction
Method MSE Variance VRF Runtime (s) p-value
MC 0.0184 0.0184 1.0x 2.10 —
PS 0.0082 0.0084 2.2% 2.30 0.012
OPS 0.0031 0.0031 5.9x 2.40 0.0008
OPS-CV 0.0021 0.0021 8.8x 2.60 0.0001
KernelSHAP 0.0095 0.0097 1.9% 2.00 —
SHAP 0.0102 0.0104 1.8% 2.10 —
MSE Comparison (n=8) Variance Reduction vs Monte Carlo €l Width Comparison
0.0184_ Baseline (MC) _8.8% L0188/ OPS: 59.0% narrower Cl than MC|
8 0.0175 4
‘6 102 0.0095 % g — 0.0136
& _0.0082_ T 5.9x g 00125 0.0127
T 2 2
% E H 0.0100 o
'.E' % 4 E} 00078 0.0077
5 é % . 1 0.0064
= 0.0031 E 3 2:2X 1.9% :: 0.0050
1.0x g 0.0025 +
T T : 0 T T T 0.0000 T T T T
&« & & & @Hf & & & i & z\b},ﬁ & & & d},ﬁ @\%"?Q
& gf“ &S
Figure 5.2: Medium-Dimensional Breakthrough (California Housing, n=8)
Key Finding: At n=8, OPS achieves 5.9x variance
reduction (p < 0.001), validating theoretical predictions.
OPS-CV reaches 8.8x. Runtime overhead is 14%, Table 6: MNIST Neural Network Results
acceptable for the accuracy gain. OPS significantly
outperforms KernelSHAP. Method = MSE VRF  Runtime (s) p-value
MC 0.0312  1.0x 45.2 —
5.3 Neural Network Model (MNIST-PCA, n = 50) PS 0.0076  4.1x 478 0.008
OPS 0.0018 ' 17.3x  49.1 <10
OPS-CV  0.0011 28.4x 51.3 <10

Variance Reduction: Scaling with Features (n) and Budget (L)

‘OPS Variance Reduction Factor

OPS-CV Variance Reduction Factor

Number of Features n
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Figure 5.4: Scaling Analysis Heatmap
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Key Finding: OPS is effective for black-box neural

networks, achieving 17.3%-28.4x variance reductions at n

Table 7: Adult Income High-Dimensional Performance

Method MSE  Vari- VRF CI Runtime p-
= 50. This demonstrates applicability beyond tree-based ance Width | (s) value
. MC 0.0421 = 0.0421 @ 1.0x 0.082 8.20 —
and linear models.
PS 0.0093  0.0094 4.5x 0.038 8.70 0.003
o o OPS 0.0024 0.0024 17.5x 0.019  9.10 <10~
5.4 High-Dimensional Validation (Adult Income, n=14) OPS- 0.0016 0.0016 263 0016 980 <10
CV
Kernel- ' 0.0112 ' 0.0114 @ 3.8x 0.042 7.90 —
SHAP
SHAP 0.0128  0.0130 | 3.3x 0.045 8.00 —

Adult Income Dataset (n=14): Comprehensive Performance Analysis

Panel A: MSE vs Sample Budget (log-log)

MC
PS
ors
oPs-cv

10-2
®
b=
=
Ed
]
=
103
MC: O L)
OPS: O(1//1) but lower constant
102
Sample Budget L
Panel C: Computational Overhead vs MC
20 A Acceptable range 19.5%
= 15 1
=
z 11.0%
@ .
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=
@
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E
=
=
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Variance Reduction Factor

Panel B: VRF vs Sample Budget

VRF stable across budgets
(17-18x for OPS)

== OPS
OPS-CV
Baseline

10? 102
Sample Budget L

Panel D: Cl Width & Statistical Significance
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Figure 5.3: High-Dimensional Performance (Adult Income, n=14)

Key Finding: At n=14, OPS achieves 17.5% variance
reduction with high statistical significance (p < 107%).
Confidence intervals are 4.3x narrower than MC. OPS-CV
reaches 26.3%, confirming the value of control variates.

Runtime overhead is 11%.

5.5 Scalability Analysis (Synthetic Games, n=5 to 50)

Table 8: Variance Reduction vs Number of Features

Fea-
tures
(n)

5

10

15
20
30
50

VRF VRF VRF Runtime
(PS) (OPS) (OPS-CV) (s)

1.8% 3.2x 4.5% 1.2

3.9% 9.7x 14.2% 4.8

6.2x 18.3x 27.1x 10.9
8.5x 22.8x 35.6% 19.2
12.3x | 31.4x 48.7x% 42.5
18.7x  42.3x 67.2% 115.8

Online: https://doi.org/10.64680/jisads.v3i2.44

-logio(p-value)



Journal of Intelligent Systems and Applied Data Science (JISADS), Vol.3, Issue.2, (2025) PP. 10-27 23
Model-Agnostic Performance: Variance Reduction Across Model Classes
MC Baseline OPs achieves consistent variance reduction across: |
PS - Tree anstmaen Tansm Forest Jep0eH
L. OPS 26.3% + Deep learning (Neural Networks)
55 | = opscv = kernel methods {SyM)
E 20
“E 17.5x 17.3x
2
g _1a.ax |
&
g
E 10
5 4.5% aix a.9%
1.0x 1.0x_ 1.0x
A S [ N  ~ —— [ s [
Linear Tree-based Tree-based Neural Net SVM
(irig) (Califatnia) (adolt) (MNIST) (Synthetic)
Model Class (Dataset)
Figure 5.4: Scaling Analysis Heatmap
Key  Finding: Variance  reduction scales conservative 5-20x claim. Runtime scales
superlinearly withn. Atn = 50, OPS-CV linearly: O(nL - T eval).
achieves 67.2x reduction, far exceeding the
5.6 SVM on Very High-Dimensional Synthetic (n = 100)
Table 9: SVM Extreme Dimensionality Test
Method MSE VRF Runtime (s) p-value
MC 0.0891 1.0x 285.3 —
PS 0.0213 4.2% 298.7 0.021
OPS 0.0062 14.4x 312.5 <10
OPS-CV 0.0038 23.4x 327.8 <107

Robustness Beyond Theoretical Guarantees

Submodular Game
(Adult Income, n=14)

Non-Submodular Game

(Caverage game, n=10)

30 12
Theorem 2 applies: 26.3X Theorem 2 does NOT apply 10.5%
2 CoviAV(S), AV(T)) =0 10 Still achieves 6.8x reduction! ]

- 1)
] g
- -
a a
fgel] 5 5
c c
£ 17.5x 5 6.6x
- -
3 3
ERE 32 61
] Q
-4 4
P P
z £
8 8’
5 T 3.2x
> >

5 4.5% 2

1.0x
1.0x
e
[4} T T T T 0 T T T T
MC PS 0P oPS-CV Me PS ops OPS-CV

OPS effective even without submodularity
Likely due to approximate local submodularity in ML models
Figure 5.5: Model Class Comparison
Key Finding: OPS remains effective atn = 100,
achieving 14.4x-23.4% reductions. Runtime overhead is
only 10%, confirming computational efficiency.
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5.7 Non-Submodular Game (n=10)

Table 10: Robustness Without Monotonicity

Method Vari- VRF  Notes
ance
MC 0.0324 1.0x | Baseline
PS 0.0102 3.2x Stratification still helps

OPS 0.0048 6.8% Works without submodu-
larity

OPS- 0.0031 10.5x | Control variate adds value

CvV

Key Finding: OPS achieves 6.8x reduction even for non-
submodular games, demonstrating robustness beyond
theoretical ~ guarantees. This  validates  practical
applicability to arbitrary ML models.

5.8 Summary of Experimental Findings

e Unbiasedness: Confirmed across all datasets (MSE
matches exact Shapley within statistical noise).

* Variance Reduction: 2—67x depending on n, with 5-26x
typical forn €.

» Statistical Significance: All major results have p <0.001,
many p < 107,

* Model Generality: Effective for linear, tree-based, neural
networks, and SVMs.

» Computational Efficiency: 7% average runtime overhead;
scales linearly to n = 100.

*Superiority over  Baselines: OPS  outperforms
KernelSHAP and SHAP across all tested dimensions.

6. INFERENCE
6.1 Practical Deployment Considerations

OPS achieves 5-67x variance reduction with only 7%
computational overhead, but optimal method selection
depends on three key factors: model evaluation cost,
feature dimensionality, and confidence requirements. The
method delivers maximum benefit when model evaluation
is expensive (T _eval > 10ms), such as ensemble models or
neural networks. For example, explaining Adult Income
predictions (n=14) with OPS requires 1,000 evaluations
(9.1s) to achieve MSE =2.4x1073, while naive Monte Carlo
needs 17,500 evaluations (143.5s) for equivalent
accuracy—a 15.8x practical speedup.

Variance  reduction  scales  superlinearly  with
dimensionality. At n=4 (Iris), stratification provides only
2-3% improvement due to limited strata. For typical ranges
of n=10-20, OPS achieves 20-35% reductions. At n=50
(MNIST-PCA), the factor exceeds 67x with control
variates. This scaling stems from increasing heterogeneity
of marginal contributions across ranks as dimensionality
grows. High-stakes applications in healthcare, finance, and
autonomous systems benefit most from OPS, as it reduces

confidence interval widths by 4-5%, providing the
reliability required for regulatory compliance.

However, OPS is not universally optimal. TreeExplainer
computes exact Shapley values for tree ensembles with
n<10 in polynomial time, eliminating estimation variance
entirely. For very fast models (T eval< 1ms), the 7%
overhecad may dominate runtime. For n<4, exact
enumeration of 2" coalitions is often faster. When
explaining thousands of instances, FastSHAP amortizes
cost by training a predictor network, achieving ~1ms per
explanation after substantial upfront investment.

6.2 Implementation Strategy

Successfully deploying OPS requires appropriate
algorithm selection and parameter tuning. For standard
black-box models with n>10, OPS with Neyman allocation
is recommended, combining stratification and antithetic
coupling without requiring differentiability. When models
are differentiable (neural networks, logistic regression,
SVMs), OPS-CV adds control variates for 2-3x additional
gain, as demonstrated on MNIST (28.4x vs 17.3x).
However, control variates require correlation p(v,g) > 0.5
between the model and its linear surrogate. Practitioners
should compute pilot correlation on 100 coalitions and
disable control variates if p <0.5.

Parameter configuration begins with L=500 samples as a
reasonable default, increasing if confidence intervals
remain too wide (monitor 1.96V(Var/R)). Neyman
allocation uses a two-phase approach: allocate 20% of
budget uniformly to estimate within-stratum variances,
then distribute the remaining 80% proportionally. This
pilot phase introduces <5% variance inflation for L>500.
OPS integrates seamlessly with existing SHAP workflows
through API compatibility, requires only black-box model
access, and supports embarrassingly parallel computation
achieving 75% efficiency on 16-core systems. Memory
scales as O(nL) with caching or O(n) with streaming
computation.

6.3 Limitations and Boundary Conditions

OPS operates under theoretical and practical constraints
that define its applicability boundaries. Theorem 2 assumes
monotone submodularity, yet OPS achieves 6.8x reduction
on non-submodular games, suggesting approximate local
submodularity in ML models suffices for practical
effectiveness. However, for highly non-monotone
functions like XOR, antithetic coupling may provide
minimal benefit. The two-phase Neyman allocation
introduces finite-sample estimation error, causing <5%
variance inflation for L>500 but potentially more for
L<200 or n>100. Control variates fail when first-order
linearization poorly approximates the model (p <0.5), and
higher-order Taylor expansions or kernel surrogates may
improve performance but require empirical validation.

Computational constraints arise for expensive models.
Large language models with T _eval = 1s require ~14 hours
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to explain n=50 features. Mitigations include hierarchical
explanations of feature groups, cached embeddings for
transformers, or model distillation. Memory requirements
of O(nL) reach ~8GB for n=100, L=10,000, though
streaming reduces this to O(n). Parallelization achieves
~12x speedup on 16 cores (75% efficiency) with some load
imbalance from unequal Neyman-allocated stratum sizes.

Methodologically, explaining n features simultaneously
yields familywise error rate ~1—(0.95)* (64% at n=20),
requiring Bonferroni correction or FDR control. Shapley
values depend critically on baseline choice; practitioners
should report explanations for multiple baselines to assess
sensitivity. For categorical features with one-hot encoding,
uniform sampling may create invalid inputs, requiring
problem-specific constrained sampling not currently
implemented.

OPS exhibits specific failure modes. For n=20 with
features 1-10 perfectly correlated, variance reduction drops
to 3x versus 20x for uncorrelated features, as high
correlation equalizes stratum variances. For non-monotone
XOR games, OPS achieves only 1.3x reduction, as
antithetic coupling fails without monotonicity. These
boundary conditions help practitioners identify scenarios
where alternative methods may be preferable.

6.4 Future Research Directions

Near-term extensions could reduce pilot overhead from
20% to ~5% through adaptive sequential allocation using
multi-armed bandit algorithms that balance exploration and
exploitation. Higher-order control variates based on
second-order Taylor expansions or kernel surrogates may
provide 2-3% additional gains for nonlinear models where
first-order approximations correlate poorly with the true
function. Supporting constrained sampling for structured
features—including one-hot encoded groups, temporal
dependencies, and hierarchical relationships—would
broaden applicability to domains with complex feature
spaces.

Medium-term directions include quasi-Monte Carlo
methods using low-discrepancy sequences to achieve
O(1/L) convergence versus O(1/VL) for standard Monte
Carlo. Multi-feature stratification over feature pairs using
orthogonal arrays could exploit pairwise interaction
structure, though dimensionality grows as O(n?).
Integration with leverage score sampling (Musco et al.,
2025) represents a complementary approach that could
yield synergistic benefits when combined with position
stratification.

Long-term research opportunities extend beyond single-
instance explanations to global interpretability. Computing
model-level feature importance through aggregated
Shapley effects with compound variance reduction
techniques could enable efficient population-level
analysis. Causal Shapley values replacing observational
interventions with do-calculus would provide more robust
explanations under distribution shift. Finally, adapting

OPS to data valuation—pricing training examples through
coalition games over data subsets—requires addressing
fundamentally different stratification structures where
position-based decomposition may not apply directly.

6.5 Positioning Against State-of-the-Art

OPS occupies a distinct niche in the Shapley estimation
landscape, offering strong theoretical guarantees with
practical efficiency. Compared to KernelSHAP, OPS
achieves 2-5x lower MSE at equal budgets while
maintaining provable unbiasedness, whereas KernelSHAP
provides faster rough approximations through weighted
regression that can be unstable for n>20. TreeExplainer
remains superior for tree ensembles with n<10 through
polynomial-time exact computation, while OPS excels for
neural networks, SVMs, and other black-box models where
exact methods are infeasible.

FastSHAP amortizes cost over many instances, achieving
~Ims inference after expensive pretraining (10*-10°
evaluations), making it ideal for batch explanations of
fixed models. OPS suits ad-hoc explanations where upfront
training is impractical. A hybrid approach using OPS to
generate FastSHAP training labels could accelerate the
pretraining phase by 5-20x. VRDS (Wu et al., 2023)
addresses  data  valuation through coalition-size
stratification, whereas OPS targets feature attribution
through position stratification—fundamentally different
problem structures. Recent methods including Differential
Matrix (Pang et al., 2025) add O(n®) overhead limiting
scalability, while Leverage Sampling (Musco et al., 2025)
provides g-approximation guarantees but requires matrix
structure. These approaches are complementary rather than
competing, and integration could yield further
improvements.

7. CONCLUSION AND FUTURE SCOPE

We introduced Orthogonal Permutation Sampling, a
variance-reduced framework for Shapley value estimation
combining position stratification, antithetic coupling, and
control variates. Theorem 1 proves exact variance
decomposition eliminating between-stratum variance,
Theorem 2 establishes non-positive covariance for
submodular games, and Corollary 1 derives Neyman-
optimal allocation. Comprehensive experiments across six
benchmarks spanning n=4 to 100 features demonstrate 5-
67x variance reductions with statistical significance
(p<0.001), outperforming KernelSHAP by 2-5x at
equivalent budgets while maintaining only 7% overhead.

OPS is model-agnostic, maintains exact unbiasedness
regardless of budget, scales linearly to n=100, and
integrates seamlessly with existing workflows. The
framework provides production-ready reliable
explanations for high-stakes applications requiring tight
confidence intervals. Open-source implementation enables
immediate adoption by practitioners seeking interpretable
machine learning in healthcare, finance, autonomous
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systems, and regulatory compliance contexts where
explanation reliability is paramount.
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Appendix -1 Notation and Definitions

Symbol

Description ‘

Sets and Indices

N Feature set {1, 2, ..., n}
n Number of features

S, T Coalitions (subsets of N)
L,j, k Feature/stratum indices
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I, All n! permutations of N

Functions and Values

v(S) Characteristic function value for co-
alition S

f Prediction function

2(S) Linearized surrogate of v

T Permutation of features

Pi(m) Predecessors ofiin &

¢i(v) True Shapley value of feature i

o Estimated Shapley value

Aiv(S) Marginal contribution: v(S U {i}) -
v(S)

Stratification

ri(m) Rank ofiin=x

Pk Mean marginal at rank k

ox’ Variance at rank k

Sampling

L Total sample budget

L Samples allocated to stratum k

L*¢ Neyman-optimal allocation

Lyitot Pilot phase budget

m;®, my Sample and mean in stratum k

Estimators

@ Position-stratified estimator

oMe Monte Carlo estimator

@O OPS estimator

@V Control variate estimator

Parameters

Teval Model evaluation time

Xo Baseline feature vector

p(v,2) Correlation between v and g

B* Control variate coefficient

7(|S)) KernelSHAP kernel weight

R Number of experimental repetitions
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