
Vol. 1 No. 1 (2023) pp. 1-53: Journal of Intelligent

Systems and applied data science (JISADS)

ISSN (2974-9840) Online

We are pleased to publish the inaugural issue of the Journal of Intelligent Systems

and Applied Data Science (JISADS). JISADS is a multidisciplinary peer-reviewed

journal that aims to publish high-quality research papers on Intelligent Systems and

Applied Data Science. Published: 2023-07-15 and the issue closed on 5 articles

and total pages are 53 pages.

Editor-In-Chief:
Wasim Ali
Politecnico di Bari, Italy

Editor@jisads.com

mailto:Editor@jisads.com

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

1

Impact Of Using Fiber Delay Scheme On Burst Loss Ratio And Delay Using

Offset Time Algorithm For Optical Burst Switching Networks

Laila A. Wahab Abdullah Naji1, Ibrahim Khider Eltahir1*, Hadeil Haydar Ahmed Elsheikh1

Tefke2010@Gmail.Com, Ibrahim_Khider@Hotmail.Com, Hdola1989rm@Gmail.Com.

1 University of Aden-Faculty of Aden, Yemen

Abstract

The optical burst switching (OBS) paradigm is an intermediate optical switching solution between optical

packet switching (OPS) and optical circuit switching (OCS). In addition, OBS has enormous bandwidths that can

satisfy the requirements of bandwidth applications and the growing number of end users. OBS, suffer from burst

contention due to a lack of optical buffers. This problem results in a high burst loss ratio and increased end-to-end

delay, thus degrading the performance of the OBS network. This study has proposed a Fuzzy Offset Time algorithm

(FOTA) to address the above issues. The fuzzy input comprises three parameters: B.Size, Distance, and Q.Delay. In

this study, Five defuzzification techniques are used Centroid, bisector, largest of maximum, smallest of maximum,

and mean of maximum (CM00, BM04, LM02, SM03, MM01, respectively) applying to both maximum and algebraic

sum accumulation techniques using fiber delay schemes. The results of FOTA show the defuzzification (LM02 and

LS02) have effects in reducing BLR (burst loss ratio) while the defuzzification (SM03 and LS02) have effects in

reducing end-2-end delayed, respectively.

Keywords: OBS Networks, FOTA, Fuzzy Logic controller, average e-to-end delay, BLR

1. INTRODUCTION

In the latest years, the interest in the internet

has been growing. Still, today, users rely heavily on

the Internet of Things (IoT), artificial intelligence

(AI), multimedia applications, and other internet

technologies such as marketing and banking online.

These technical advancements need a large amount of

bandwidth to be implemented. The optical fiber may

be offered to solve to match the huge requirement of

raw bandwidth. A single optical fiber can give a

bandwidth of up to 50 THz, so wavelength division

multiplexed (WDM) is one solution that matches the

requirement of huge raw bandwidth [1]. WDM

technology is widely used to meet the significant

increase in the demand for channel capacity due to the

rising customer and to face the challenges [2] and

gives a large amount of bandwidth [3]. Optical burst

switching allows dynamic sub-wavelength data

switching, eliminating throughput constraints and

maximizing bandwidth utilization. Different user data

types are merged at the OBS network's edge node

before being sent as data bursts. Every burst has a

control packet with its information in it. A separate

control channel has been designated for the

transmission of this packet. Due to its smaller size, this

control packet can contain information for hundreds of

data channels. At each intermediate OBS node, the

control packet undergoes an O/E/O conversion and is

mailto:Tefke2010@Gmail.Com
mailto:Ibrahim_Khider@Hotmail.Com
mailto:Hdola1989rm@Gmail.Com

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

2

electrically switched to obtain a configuration with the

switch. The network is establishing an offset time.

Before the core can allocate resources to the upcoming

burst, offset time is the amount of time it takes to

process the information in the control packet; it is

referred to as the processing configuration delay. The

data burst can immediately switch in an optical

domain with the appropriate offset time. At the

intermediate nodes, optical RAMs or FDLs (Fiber

delay lines) will be less necessary due to this.[4]

OBS is an attractive and preferable choice over

Optical Packet Switching (OPS) and Optical Circuit

Switching (OCS), as it can handle the dramatic

increase in multimedia applications' traffic [2]. Unlike

OCS and OPS, data is transmitted in bursts instead of

packets. The bursts are grouped and sent based on their

destination. Table1: gives a comparison between the

three-switching technology. [5][6][7]

Table 1: Comparison of the three techniques of

optical switching

Chara

cterist

ics

Prope

rties

Ban

dwi

dth

S

et

-

u

p

Opti

cal

buff

er

Ove

rhea

d

Proc

essi

ng

Traff

ic

Adap

tabili

ty

Spe

ed's

Swi

tchi

ng

Com

plexi

ty

Proc

essin

g

Sig

nalli

ng

Sch

eme

Circui

t
Low

H

ig

h

Un

wan

ted

Low Low
Slo

w
Low

Tw

o

way

s

Packe

t

Hig

h

L

o

w

Wa

nted

Hig

h
High Fast High

One

Wa

y

Burst
Hig

h

L

o

w

Un

wan

ted

Low Low

Mo

dera

te

Med

ium

One

way

OBS network architecture consists of edge and core

nodes (ingress and egress nodes). All IP packets from

different access networks are aggregated in the form

of bursts by the ingress node[8]. See Figure1 [9].

Figure 1: OBS network architecture

The main functions of an ingress node are: aggregating

the bursts, generation of the burst header packet

(BHP), determination of the offset time, determining

the routing and wavelength assignment (RWA),

wavelength reservation, and signaling. The signaling

process is facilitated by combining the packets into a

single data burst, which reduces the number of

requests at the core nodes [9]. Also, the main

processing of the core nodes is, switching all-optical

data bursts from one input port to another depending

on the information in the BHP. The core node resolves

contention between bursts by deciding the routing of

the burst. The egress node's main functions are to

disassemble the large bursts to the original packet and

route them to their respective final destinations

forwarding [10].

The following structure is used for this paper: Section

II discusses the related works on offset time. The

proposed Algorithm of Offset Time is reported in

section III. The results' simulations are explained in

section IV, and the conclusion of this study is in

section V.

2. RELATED WORKS OF OFFSET TIME

ALGORITHM

The time data bursts following its control

packet after some time is known as offset time. The

offset time allows the switch to handle the control

packet. This includes getting the needed resources and

setting up the optical switch at transitional OBS nodes

so that the next burst can pass through each transitional

OBS node without waiting for the resources or the

switching fabric. The offset time is set to complete all

these operations before the data burst arrives.

Different offset times can isolate different traffic

classes, allowing for service differentiation. [11].

The offset time should be longer than the total BHP

processing times at all nodes because of the

configuration and reservation time spent at the core

nodes. The burst will be discarded if the offset time is

shorter than the processing time because it will arrive

before the BHP. Thus, the burst loss probability and

end-to-end delay are used to evaluate the efficiency of

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

3

any offset-time method [9].Figure2 displays an OT

scheme in OBS networks [12].

Figure 2 Displays an OT scheme in OBS networks.

Due to the processing delay of the CP at all nodes from

ingress to egress, it is challenging to have all bursts

with the same offset time [13]. The Virtual Fixed

Offset Time (VFO) was presented as a solution to the

issue of processing delays that vary from one to

another. VFO processes bursts in accordance with the

burst arrival time rather than the CP arrival time. The

burst with the earliest arrival time is scheduled after

the CPs have been sorted by their burst arrival time.

However, fiber delay lines (FDLs) utilize the burst

offset time at each node to delay bursts and ensure that

no other bursts arrive before the earliest burst

scheduled. The VFO scheme sends the smaller bursts

directly but increases the delay time for larger bursts;

this operation causes the problem of unfairness

between bursts, even though it delays the larger bursts

in each node using FDLs beside this, it is the using of

FDLs is costly.

Fixed OT scheme is derived from [14] the just-

enough-time signaling protocol (JET). OT for JET

protocol is constant and is the summation of

processing times for all hops, and the time of

switching configuration, switching time, and

processing times at each node are equal. Estimation

OT must know how many hops there are between the

source and destination nodes. Due to waiting delays in

the control channel, these times may vary between

nodes. Having a defined offset time has the

disadvantage of allowing small bursts to be sent

sooner and without delay. In contrast, there won't be

enough time to send large bursts.

[15], also proposed an algorithm that maximizes

resource use while reducing loss. The suggested

algorithm requires wavelength of full conversion

capabilities from the nodes whose routing information

is provided through nodes in the OBS Networks. The

edge nodes choose the best routes based on the typical

link availability. Updates are made to the average

traffic volume and link availability. Although burst

loss results were more significant than utilization

outcomes under low-load conditions, this technique

outperformed the other examined algorithms.

To achieve a high degree of isolation between bursts

of varying sizes, the Adaptive offset-time scheme

gives larger bursts more offset time [16]. Additionally,

if the isolation of OT is equal to the size of the burst, a

degree of separation of one can be attained. As a result,

the network's overall performance is enhanced, and the

blocking probability is decreased when the additional

OT is applied to a larger burst. The scheme's drawback

is that the additional offset time will result in long

delays and higher loss penalties. Furthermore, the

adaptive OT system is better appropriate for usage in

long-distance networks with high real-time traffic,

making the offset time insignificant in comparison to

the delay of transmission.

In the Jacobson-Karels algorithm, when the period of

burst assembly is less than the OT, this method

reduces the OT by transmitting the control packet

containing an estimate of the burst length just before

the period of assembling the burst expires. This

method transmits bursts faster than the conventional

approach and does not add additional offset time

delay. The retransmission time (in the transmission

control protocol TCP) should be calculated using this

algorithm, and the burst length should be predicted and

then added in the header of the BHP, so BHP can be

sent before the time of burst assembly expires.

Inaccurate estimation causes an increase in burst

loss17].

A method is provided by [18] for obtaining a moderate

OT that fits the insufficient OT drop ratio criteria

while preserving a tradeoff between the two. The burst

loss probability, which is used as a monitoring

variable, is used to allocate offset time dynamically to

reach this equilibrium. After measuring the

background traffic on the core nodes, the OT is

dynamically set.

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

4

The burst scheduling techniques published in the

previous tenses, in contrast to conventional scheduling

algorithms, are focused on maximizing the utilization

of local networks. For instance, [19] proposes a

method that uses local networks without increasing the

burst loss rate. The gap between bursts is reduced by

connecting upcoming bursts with existing bursts. A

variable offset-time value can be achieved by

establishing minimum and maximum OT limits

instead of defining an offset-time value. Alternately,

the bursts can be aligned at the beginning or end of the

selected vacuum. However, no evidence exists that

this method changes offset time's value.

The authors [20] examined how offset time affected

the burst loss ratio. As the adjusting parameter, OT

was used. The researchers suggested controlling the

closed-loop feedback method for an adaptive offset

time. As a result of the feedback that was received, the

offset time is changed adaptively. The model supplies

the BHP using the shortest offset time value before its

associated burst.

In [21], the intelligent offset time is better than

conventional and adaptive offset time in terms of E2E

delay and BLR. The authors used in this algorithm a

fuzzylite program and Omnet++ simulation to perform

this algorithm using centroid defuzzification to

evaluate these two matrices.

3. THE PROPOSED ALGORITHM OF OFFSET

TIME

The contention is the main problem in the

core network of OBS networks which causes drop

bursts; so many researchers try to avoid contention at

the edge node by using different techniques to

minimize contention. Controlling the offset time delay

has been proposed in this study, so the size of the burst,

the time of assembled burst wait at the assembler, and

the distance from ingress to the egress node is the main

parameter in this study to minimize the contention. In

this proposed algorithm, the main input parameters to

the fuzzy logic controller are B. Size, Q.Delay (the

time spent by burst in queuing before being directed to

the core nodes), and distance (hops number), while OT

is the output control variable. The new output value is

a Fuzzy offset time (FOT) used for the burst header

packet BHP to reserve the resources (wavelengths)

needed for successful transmission. This algorithm is

multi-input single output and has 27 rules to evaluate

it.

The design of FOT algorithms consists of two main

components:

1. Design the fuzzy logic controller of fuzzy

Offset Time, where its component is:

• Identification of control variables:

The control variables used in this

algorithm to generate the Fuzzy Offset

Time are the Burst Size, Q. Delay, and

distance. These control variables are

used as inputs to the FLC. The last

control variable is Offset Time, the

output parameter where the three

inputs are used to calculate the

adaptive value of offset time.

• Fuzzification of control variables:

Here, the input and output control

variables are converted into fuzzy

forms using triangular membership

functions (TMF).

• Knowledge base formation: In this

stage, a set of rules are formulated by

the Fuzzy Logic Controller (FLC)

where four (three inputs and one

output) sets of fuzzy rules are defined

for FLC.

• Fuzzy Inference Engine formation: a

Mamdani fuzzy inference engine was

chosen.

• Defuzzification of Fuzzy Output

variables: The output control variable

is in the form of fuzzy to convert into

its crisp value. In this phase, a

defuzzification process produced an

output that achieves the objective of

this study.

2. Designing the algorithm and integrating it

with the FLC: Here, the FLC and the FOTA

procedure are integrated to explain the FOT

algorithm in this stage.

The OBS paradigm was simulated on the

Omnet++ simulation framework version 4.2.2

platform. Omnet++ was chosen for this study due to

its many useful features. A few of its beneficial

attributes are open source, free for academic research,

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

5

and ease of programming due to object-oriented

programming basics. Omnet++ simulation framework

was selected because it has a well-developed OBS

simulation model (component or plug-in).

In this study, each control variable is divided

into three partitions, each witha label name, as shown

in Table2. A triangular membership function is used

for every partition, which is the final stage of the

fuzzification process.

Table 2: Fuzzy input variable with operation

range

Fuzzy

variables

Universe

of

Discours

e

Partition label (T)

In
p

u
t

B. Size
[0, 60]

k bytes

Small

Medium

Big

Distance [0, 8]
Short

Middle

Long

Q. Delay
[0, 400]

µs

Low

Average

High

O

u
tp

u
t FOT

[0, 100]

µs

Little

Moderate

Large

In this phase, the simulation results obtained from the

experiment were analyzed, assessed, and discussed.

Burst loss ratio (BLR) and burst end-to-end delay,

which are the two-performance metrics, were used to

assess all of the study's finding results in this study.

They were chosen to ensure the algorithms are

appropriate for BLR and end-to-end delay-sensitive

applications. More important, the results of the

analysis and evaluation are as the following:

Proposed Fuzzy Offset Time algorithm

versus the existing intelligent offset time algorithm:

A. Applying different defuzzification

processes such as Bisector, Largest of

Maximum, Smallest of Maximum, and

Mean of Maximum "with FDL" versus

Centroid using maximum as the

aggregation type.

B. Applying different defuzzification

processes such as Bisector, Largest of

Maximum, Smallest of Maximum, and

Mean of Maximum "with FDL" versus

Centroid using Algebraic sum as the

aggregation type.

The parameters used for the Omnet++ simulation

framework's OBS modules plug-in is shown in Table

3

Table 3: Parameters and setting of OBS

Simulation

Parameter Value

Network

Topologies

NSFNET

Number of

channels

4 (3 data

and 1 control) Bandwidth

per channel

1

Packet Size

(Bytes)

1250

Control

BCP

10

Propagation

delay (µs)

1

Packet

interval

Exponential

Scheduling

Scheme

LAUC

Timeout (s) 0.0005

Burst

threshold

1.5K

Burst

threshold

60K

Load (min) 0.1

Load (max) 1

Load

(Increment)

0.1

Signalling

Scheme

JET

Optical

Buffers

ON

The network is NSFNET, consisting of 14

bidirectional links, uniform traffic distributed across

all source/destination pairs, and one wavelength

allocated as a control packet channel on every link.

The algorithm design compares with the Intelligent

offset Time (IOT). The two important evaluation

metrics in this study are BLR and end-to-end delay.

4. RESULT AND DISCUSSION

From Figure 3, it is clear that there is an

increase in the burst loss ratio for all defuzzification

methods when FDLs are employed as optical buffers.

FOT LM02 is the best in the case of BLR due to the

low burst loss ratio exhibited by FOT LM02, which is

due to its ability to use its rules in the fuzzy logic

controller to produce an adequate value of offset time

between the BHP and data burst of suitable sizes. As a

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

6

result, FOT LM 02 generates bursts of large sizes that

lower the network's level of congestion and hence

minimize burst contention and their loss. However, the

FOT LM02 configuration provides better network

performance than other configurations under heavy

load.

Figure 3: Burst Loss Ratio versus offer load for diffèrent

défuzzification techniques and Maximum aggregation

method with FDLs.

As shown in Figure 4, FOT SM03 has better

performance in terms of end-to-end delay than the

three configurations of the FOT algorithm and IOT

algorithm due to the small burst size. However, despite

the heavy traffic load and growing burst size, FOT

SM03 has a constant average delay value from 0.8 to

1.0. FOT LM02 has the highest delay due to the large

burst generation, which tends to have a longer

transmission time, although, of this, it has less burst

loss ratio. When the burst size is small, BHP does not

need a large processing time and is directed to the

destination without any loss and will not take time in

buffering during processing BHP. Unlike when the

burst size is large, it needs buffering for a fixed and

predetermined duration which is limited by fiber

length, so when there is a large burst in queuing, this

causes the burst to drop and hence increases the BLR

because the FDL process a FIFO system.

FOT SM03 has a high burst loss ratio because

it generates many large bursts, which causes high

contention. In return, it has the best network

performance because it produces less end-to-end delay

ratio due to generating small bursts.

Figure 4: Burst average end-to-end delay versus offer Load

for different defuzzification techniques

and Maximum aggregation method with FDLs

Figure 5 shows an increase in the burst loss

ratio for all FOT LS02 while IOT CS00 still without

change on both burst loss ratio and end-to-end delay

means; IOT CS00 has no effect while changing the

aggregation from maximum to algebraic sum. From

0.8 to 1.0, it is noticeable that IOT CS00 and FOT

MS01 have the same end-to-end delay due to

generating equal data burst size and causingan equal

burst loss ratio.FOT LS02 displayed the best burst loss

ratio when compared with other defuzzification

techniques, and in return. At the same time, IOT CS00

is better than both FOT MS01 FOT BS04 and FOT

SS03, as FOT LM 02 generates bursts of large sizes

that lower the network's level of congestion, so it

minimizes burst contention and reduce loss of burst.

However, the FOT LM02 configuration provides

better network performance than other configurations

under heavy load. However, the fuzzy rule the

configuration FOT LS02 uses effectively reduces the

burst loss ratio at all offered loads.

Figure 5: Burst Loss Ratio versus offer load for different

defuzzification techniques

And Sum aggregation method with FDLs.

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

7

As shown in Figure 6, FOT SM03 has better

performance in terms of end-to-end delay than the

three configurations of the FOT algorithm and IOT

algorithm due to the small burst size. However, despite

the heavy traffic load and growing burst size. From 0.1

to 0.4, IOT CM00 is better than FOT MM01 and FOT

LM02 regarding end-to-end delay. FOT LM02 has the

highest delay due to the large burst generation, which

tends to have a longer transmission time, although, of

this, it has less burst loss ratio. When the burst size is

small, BHP does not need a large processing time and

is directed to the destination without any loss and will

not take time in buffering during processing BHP.

Unlike when the burst size is large, it needs buffering

for a fixed and predetermined duration which is

limited by fiber length, so when there is a large burst

in queuing, this causes the burst to drop and hence

increases the BLR because the FDL process a FIFO

system. FOT SM03 has a high burst loss ratio because

it generates a high number of busts which causes high

contention. In return, it has the best network

performance because it produces less end-to-end delay

ratio due to generating small bursts.

Figure 6: Burst average end-to-end delay versus offer Load

for different defuzzification techniques and Sum

aggregation method with FDLs.

5. CONCLUSION

This study presents an algorithm using the

fuzzy offset time (FOTA) to reduce the burst loss

probability (BLR) and end-to-end delay in optical

burst switching networks. Adding FDLs increases the

burst loss ratio, as in Figures 3 and 5; in contrast, end-

to-end delay performs the best in Figures 4 and 6.

Compared to different defuzzification, FOT LM02

performs the best loss ratio, while FOT SM03

performs the best on end-to-end delay. In future

research, it is recommended to explore alternative

aggregation methods beyond the ones utilized in this

study, such as different techniques apart from

maximum and algebraic sum aggregation.

Additionally, considering the use of a greater number

of partitions for each fuzzy control variable can be

proposed to enhance the precision and accuracy of the

findings.

REFERENCES

[1] Manoj Kr. Dutta, "Performance Analysis of
Deflection Routing and Segmentation Dropping
Scheme in Optical Burst Switching (OBS) Network:
A Simulation Study," Springer Nature Singapore,
Advances in Intelligent Systems and Computing 988
Vol. 988, Proceedings of Second International
Conference on Computational Intelligence, 121-128,
2020, doi:10.1007/978-981-13-8222-2_10.

[2] Kavitha GR and Indumathi T.S, IJECE," Novel
ROADM modelling with WSS and OBS to Improve
Routing Performance in Optical Network,"
International Journal of Electrical and Computer
Engineering, Vol. 6, No. 2, April 2016, pp. 666~673
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i2.8300

[3] Hani A. M. Harb, Waleed M. Gaballah, Ahmed S.
Samra and Arief Marwanto, "A Study of the Number
of Wavelengths Impact in the Optical Burst Switching
Core Node," IEEE, Proc. EECSI 2017, Yogyakarta,
Indonesia,19-21 September 2017.

[4] Rabia Tahir Bajwa, 2018, "A Comparative Study
of Optical Burst Switching Network Techniques",
INTERNATIONAL JOURNAL OF
MULTIDISCIPLINARY SCIENCES AND
ENGINEERING, VOL. 9, NO. 5, MAY 2018, [ISSN:
2045-7057] www.ijmse.org

[5] V.Kishen Ajay Kumar, K. Suresh Reddy and M.
N. Giri Prasad, Springer, "Review of contemporary
literature on burst assembling and routing strategies in
OBS networks,"J Opt (September 2018) 47(3):324–
331, 9 March 2018, doi:10.1007/s12596-018-0454-1.

[6] P. Boobalan, M. Mathimanirangan, V. V. Kumar,
and M. Barakathulla, "Hybrid Optical Switching In
Optical Code Division Multiplexing Networks,"
International Journal ofResearch in Engineering and
Technology, vol. 3, no. 2, pp. 663-667, 2014

[7] Laila A. Wahab Abdullah Naji et al, March 2022,
"Performance analysis comparison of optical burst
switching networks" contention resolution

http://www.ijmse.org/

Journal of Intelligent Systems and Applied Data Science (JISADS). ISSN (2974-9840) Online, Vol.1, Issue.1, (2023), PP. 1-8

8

techniques", Indonesian Journal of Electrical
Engineering and Computer Science Vol. 25, No. 3, pp.
1539~1548 ISSN: 2502-4752, DOI:
10.11591/ijeecs.v25.i3.pp 1539-1548

[8] Li Shuo, February 2014, "Analysis and Synthesis
of Optical Burst Switched Networks", Department of
Electronic Engineering, for the degree of Doctor of
Philosophy City University Of Hong Kong, Thessis.

[9] Abdulsalam Abdullah Mohammed Yayah, 2012,
"Improving End-To-End Delay Of Optical-Burst-
Switching Networks Through Enhanced Burst-
Assembly And Offsettime Scheme", thesis, Master of
Science (Computer Science), page

[10] Richa Awasthi, Lokesh Singh, Asifullah Khan,
2017, "Estimation Of Bursts length And Design Of A
Fiber Delay Line Based OBS Router ", Journal of
Engineering Science and Technology Vol. 12, No. 3.

[11] Ibrahim Khider,Laila A. Wahab , Hadeil Haydar,
2023), "Impact of Fuzzy Offset Time on Delay and
Burst Loss Ratio for Optical Burst Switching
Networks", International Journal of Engineering and
Advanced Technology (IJEAT), ISSN: 2249-
8958,Volume-12, Issue-3, February 2023

[12] Mirosław Klinkowski et al, 2009, "Performance
Overview of the Offset Time Emulated OBS
Network" Journal Of Lightwave Technology, Vol. 27,
No. 14, July 15, 2009, 0733-8724/$25.00 © IEEE.

[13] Li, J., Qiao, C., Xu, J., Xu, D., 2007. Maximizing
Throughput for Optical Burst Switching Networks.
IEEE/ACM Transactions on Networking 15 (5):
1163-1176.

[14] T. Venkatesh C. Siva Ram Murthy, "An analytical
Approach to Optical Burst Switched Networks, ISBN
978-1-4419-1509-2, e-ISBN 978-1-4419-1510-8,
DOI 10.1007/978-1-4419-1510-8, Springer, New
York Dordrecht Heidelberg London Library of
Congress Control Number: 2009939338, c Springer
Science+Business Media, LLC 2010, Book

[15] Hazem (Moh'd Said), Abdel Majid Hatamleh
November 2016 "Contention and Scheduling
Algorithms in Optical Burst Switched Networks"
(152279 – 0764).

[16] B. Nleya and A. Mutsvangwa, "Enhanced
Congestion Management forMinimizing Network
Performance Degradation In OBS Networks",
Department of Electronic Engineering, Steve Biko
Campus, Durban University of Technology, Durban

4001, South Africa. E-mail: bmnleya@ieee.org,
Faculty of Education, Mafikeng Campus, North West
University, Mmabatho, 2735, South Africa, 2018,
Page(s): 48 – 57 Volume: 109, Issue: 1, March 2018)

[17] Barpanda, R. S., Turuk, A. K., & Sahoo, B.
(2018). QoS aware routing and wavelength allocation
in optical burst switching networks using diferential
evolution optimization. Digital Communications and
Networks, 4(1), 3–12

[18] Reza Poorzare et. al, Vol. 5 No.1 19 March 2018
"Improving optical burst switching networks (OBS)
performance by adjusting maximum burst size and
burstification time" International information and
Engineering technology Association (IIETA). Review
of Computer Engineering Studies.

[19] Reza Poorzare and Siamak Abedidarabad,
November 14, 2018, "A Novel Implementation of
TCP Vegas by Using A Fuzzy-Threshold Base
Algorithm to Improve Performance of Optical
Networks

[20] Reza Poorzare and Siamak Abedidarabad, July
25, 2019 "A Brief Review on the Methods that
Improve Optical Burst Switching Network
Performance", J. Opt. Commun. 2019; aop.

[21] Abdulsalam A. Yayah1 et.al, 2019, Springer,
"Intelligent Offset Time Algorithm for Optical Burst
Switching Networks", © Springer Nature Switzerland
AG 2019 F. IRICT 2018, AISC 843, pp. 427–439,
2019. doi.: 10.1007/978-3-319-99007-1_41

mailto:bmnleya@ieee.org
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8531790&punumber=8475037

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

9

Machine Learning Techniques for Resource Management: A Survey Study

Hadiel Elshaik1* , Salaheldin Edam1

hdola1989rm@gmail.com

1School of Electronic Engineering, Sudan University of Science and Technology, Khartoum, Sudan

Abstract

The study's objective was to use machine learning techniques to provide an overview of resource

management issues. In order to demonstrate how resource management machine learning algorithm’s function, the

study uses a qualitative methodology. The results showed that the efficient deployment of very heterogeneous IoT

networks depends on resource management, among other aspects of network administration. In conclusion, IoT

networks struggle with resource allocation in addition to having to decide how to manage resources based on

various contexts and situations. ML and DL models, unlike traditional resource management techniques such as

optimization and heuristics-based methods, game theoretical and cooperative approaches, can derive actions from

run-time context information and can retune and re-train themselves in response to changes in the environment.

ML and DL approaches offer significant potential for managing and making decisions in IoT applications that are

large-scale, complex, distributed, and dynamic. These approaches are particularly promising in addressing

challenges related to model uncertainty, interpretability, training costs, and generalization from test workloads to

real-world user workloads. To effectively tackle radio resource management issues in the expanding IoT networks,

it is crucial to carefully design solutions and conduct further scientific research in the future.

Keywords: Machine Learning (ML); Resource Management; virtual machines (VMs); Deep Learning (DL);

Reinforcement Learning (RL); Artificial Intelligence (AI); Heterogeneous Networks (HetNets)

1. INTRODUCTION

A range of resource management functions

are handled by machine learning, including

workload estimation, task scheduling, VM

consolidation, resource optimization, and energy

optimization (Khan et al., 2022). Computing's

emergence as a fifth utility is presently underway

possible as a result of the environment that cloud

computing has created for consumers of software

and IT infrastructure (Buyya et al., 2018). In cloud

computing, data center resource management

remains a tough problem that is significantly

influenced by application workload. Traditional

cloud computing infrastructures, such as data

centers, where applications were connected to

individual physical servers, were frequently over-

provisioned in order to manage issues with the

highest workload (Xu et al., 2017). Because of the

waste of resources and floor space, the data center

was costly to run in terms of resource management.

On the other hand, virtualization technology has

demonstrated its ability to make data centers easier

to administer. Among the several benefits of this

technology are server consolidation and increased

server utilization. Large-scale technology giants like

Amazon, Google, and Microsoft operate extensive

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

10

data centres that require sophisticated resource

management. These data centres encompass various

components, including servers, virtual machines

(VMs), and other associated management

responsibilities (Bianchini et al., 2020). Many VMs

with varying workload types and quantities are

assigned to a server host in these data centers.

Because of the variable and irregular demand, a

server may be over- and underutilized, resulting in

an imbalance in the resource use assigned to virtual

machines on a certain hosting server. This could lead

to issues such as inconsistent quality of service

(QoS), unbalanced energy use, and SLA violations

(Singh and Kumar, 2019).

In an uneven workload scenario, the

average CPU and memory utilization was found to

be 17.76% and 77.93%, respectively. However,

studies conducted in Google data centres have shown

that the CPU utilization in a Google cluster does not

exceed 60%, while the memory utilization remains

below 50% (Kumar et al., 2021). Workload

inconsistency diminishes data center productivity,

which has an impact on energy consumption. It is

proportionate to the data centre's financial loss and

operational expenses. Excess energy consumption

impacts carbon footprints directly, and we must look

for alternative and eliminate it because an ideal

machine absorbs more than half of maximum energy

usage. (Barroso et al., 2013). According to an EIA

(Energy Information Administration) survey, data

centres consumed around 35 Twh (Tera Watt hour)

of energy in 2015 and will consume 95 Twh by 2040

(Khan et al., 2022). Determining the optimal

mapping of virtual machines (VMs) to servers is

crucial for balancing resource utilization and

reducing the number of active servers (Li et al.,

2013). However, this problem is challenging and

falls under the category of NP-complete. To ensure

quality of service (QoS) standards and maximize the

benefits of data centres, it is essential to have an

effective resource management strategy (Kumar and

Singh, 2020). Intelligent mechanisms in the future

will provide insights that enable applications to map

to machines with higher resource utilization (Kumar

et al., 2020). Predicting these future insights is

challenging due to the nonlinear and dynamic nature

of VM workloads.

Nevertheless, there are two methods for

obtaining future workload insights: historical

workload-based prediction methods, which learn

trends from historical workload data, and

homeostatic-based prediction methods, which

estimate future workload by subtracting the prior

workload from the current workload (Kumar and

Singh, 2018). The mean of the prior workload can be

either static or dynamic. Both approaches have

advantages and disadvantages, but historical

forecasts are considered more straightforward and

well-established in this field (Khan et al., 2022).

Intelligent resource management will be

crucial in maximizing the data center's SLA, energy

consumption, and operational expenses by

performing efficient and intelligent resource

provisioning. Data center resource management

includes tasks such as resource provisioning,

reporting, workload scheduling, and a range of other

responsibilities (Ilager et al., 2020). The

provisioning of resources is central to many of these

procedures. The purpose of resource provisioning is

to provide cloud resources to virtual machines

(VMs) in response to end-user requests while

limiting SLA violations related to availability,

dependability, response time constraints, and cost

limits (Shahidinejad et al., 2021).

To minimize over- or under-provisioning, it

should assign resources based on end-user

requirements, such as allocating more or less

resources to VMs. This resource allocation approach

can be used in two ways: proactive and reactive.

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

11

Proactive tactics focus on anticipating future

workloads by using historical workload trends as a

guide, whereas reactive operations are carried out

when resource demand emerges. As a result, It may

be concluded that the experience of historical-based

prediction methods can be successfully merged into

proactive methods to provide intelligent dynamic

resource scaling, hence promoting intelligent

dynamic resource management. Furthermore, based

on projections, different operations such as task

scheduling, thermal management, and VM

consolidation may be carried out to improve QoS

and optimize resource utilization and energy usage.

Machine learning (ML) techniques are used in a

variety of industries, including computer vision,

pattern recognition, and bioinformatics. The

advancement of machine learning techniques has

benefited large-scale computing systems (Mao et al.,

2019). In a recent report, Google outlined its

initiatives to optimize electricity use, reduce costs,

and boost productivity (Jeff, 2018). The Structure of

the research paper shown in Fig 1.

Figure1: Structure of the research paper.

2. REVIEW OF MACHINE LEARNING

Machine learning is used in resource

management in a variety of ways, including

workload estimation, job scheduling, VM

consolidation, resource optimization, and energy

optimization (Khan et al., 2022). The application

burden has a substantial impact on data center

resource management, which is still a complex

problem. In conventional cloud computing

environments such as data centers, applications were

often connected to specific physical servers, and

these servers were frequently over-provisioned to

manage difficulties with the highest workload (Xu et

al., 2017). Major IT behemoths like Google,

Microsoft, and Amazon have enormous data centres

with complex resource management. Servers, virtual

machines (VMs), and other administrative duties are

part of these massive data centres' resource

management (Bianchini et al., 2020). In these data

centres, a server host is assigned to a large number

of VMs with varying workload types and amounts.

The dynamic and fluctuating demand for resources

in virtual machines can cause an imbalance in

resource allocation on hosting servers, leading to

over-utilization and under-utilization. These

problems can result in irregular quality service

(QoS), imbalanced energy utilization, and violations

of service level agreements (SLAs) (Singh and

Kumar, 2019). This paper aims to review the

challenges associated with resource management

and explores the application of machine learning

techniques to address these issues.

Definitions

Machine Learning (ML) can be defined as

the capacity to extrapolate knowledge from data and

then apply that knowledge to modify the behavior of

an ML agent in accordance with the learned

information. Techniques for machine learning have

been applied to classification, regression, and

density estimation applications. IoT devices provide

enormous amounts of data, which can be used by

data-driven ML approaches to create automated IoT

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

12

service solutions. Deep Learning (DL), more

particularly machine learning (ML), can be utilized

for feature extraction and practical categorization

when there is a large and multidimensional amount

of data accessible (Hussain et al., 2020).

3. METHODOLOGY

The goal of qualitative research, which was

used in this study, is to find notable patterns that are

indicative of a specific event through text analysis

and interpretation, interviews, and observations

(Auerbach and Silverstein, 2003). The steps of ML

of wireless sensor networks shown in Fig. 2 [1].

Figure 2: Steps of ML of wireless sensor

networks.

Because it focuses on determining the

characteristics of the population or subject under

investigation, the study employs qualitative research

as a research strategy. This qualitative methodology

focuses on the "what" rather than the "why" of the

study topic. The qualitative research approach

focuses on describing the core of a demographic

segment rather than "why" a certain occurrence

happens. In other words, it "describes" the subject of

the inquiry without going into detail about "why" it

occurs (Maxwell, 2008).

The study followed the qualitative approach

to explain the study (Machine Learning Techniques

For Resource Management: A Survey Study)

through the literature review.

Reinforcement Learning

We can apply ML approaches when past

information about the system, network, users, and

parameters is unavailable and needs to be anticipated

along with control decisions. Reinforcement

Learning (RL) is one of these methods, which

involves monitoring system behavior and unknown

parameters over time through trial and error in order

to determine the best course of action. ML is advised

when there is a model or algorithm lack for resource

management challenges (Chen et al., 2019).

Model deficit refers to a lack of domain

expertise or the absence of mathematical models,

whereas algorithm deficit refers to the presence of a

well-established mathematical model but difficulty

optimizing existing algorithms using it. In this case,

lower-complexity ML solutions are desirable.

Furthermore, when contextual information is critical

to include in the decision-making process, ML

techniques are best suited. Because of the enormous

number of devices producing massive amounts of

data and the unknown system or network states and

parameter values, the majority of IoT applications

meet the aforementioned characteristics (Hussain et

al., 2020).

4. MACHINE LEARNING IN HUMAN

RESOURCE MANAGEMENT

Machine learning models are actively

progressing in a variety of human resource

management roles (Scholz, 2017). Currently,

machine learning models are progressing in a

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

13

number of areas related to human resource

management. This study gives a summary of the

important HR functions that can be enhanced by the

implementation of machine learning and AI-based

solutions. In this paper, three unique conceivable and

potential scopes of AI solution implementation are

examined, with a focus on three different aspects of

employee engagement, organizational culture

management, and the appraisal system. Using the

decision tree model and logistic regression models to

train datasets for an application might enhance the

likelihood that the answers will be more accurate and

will produce the best form of the evaluation system.

If solutions are developed along the lines of what has

been discussed, they may be helpful to organizations

in managing their strategic human resource practices

(Rudra Kumar, 2022).

Machine learning is the study of teaching

computers to recognize objects or make predictions

without being specifically programmed to do so

(Jordan, 2015). Its primary concept is that by using

statistical methods and training data, it is feasible to

create algorithms that can forecast potential,

unforeseen values. Over the previous two decades,

machine learning has advanced from a research

project to a widely utilized commercial tool.

Machine learning has emerged as the go-to technique

for creating useful applications in computer vision

(Janai et al., 2020), speech recognition (Deng and Li,

2013), natural language processing (Olsson, 2009),

robot control (Chin et al., 2020), self-driving cars

(Stilgoe, 2018), efficient web search (Bhatia and

Kumar, 2008), purchase recommendations (Hastie et

al., 2009), and other artificial intelligence fields as

shown in Fig. 3.[2].

Figure 3: Machine Learning Process

Many AI system developers now

understand that training a system by providing

examples of acceptable input-output activities is

significantly easier than manually programming it by

making predictions for all possible inputs for various

purposes. This accomplishment is primarily due to

the availability of massive amounts of data as well as

better server and GPU processing power efficiency

[Goodfellow rt al., 2016]. Depending on the

modeling aim and the issue at hand (RL), machine-

learning algorithms are classified as supervised

learning, semi-supervised learning (SSL),

unsupervised learning, and reinforcement learning.

Unsupervised learning is divided into two

categories: clustering and dimension reduction

(Hartigan et al., 1979; Guha et al., 2000; Ding et al.,

2002), whereas supervised learning, is divided into

two categories: regression problem and

classification problem (e.g., sentence classification

(Yoon, 2014; Wenpeng and Schütze, 2015), picture

classification (Yang et al, 2009; Bazi and Melgani,

2009; Ciregan et al., 2013), etc.

Supervised Learning (Sen et al., 2020): In

supervised learning, each data sample consists of a

name and multiple input attributes. The objective of

the learning process is to create a mapping function

that accurately relates the input features to the

corresponding label. This mapping function can then

be used to predict the label for new data by utilizing

additional input features. Supervised learning is a

widely used machine learning approach across

various applications. An example of supervised

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

14

learning is classification, where an object is assigned

to a specific category based on its characteristics,

such as classifying a mobile device based on its

brand and features. On the other hand, if the

objective is to predict a continuous variable, such as

stock prices, the supervised learning task is called

regression.

Unsupervised Learning (Celebi and Aydin,

2016): When we have input features without

corresponding labels, we are involved in

unsupervised learning instead of supervised

learning. Unsupervised learning aims to understand

the underlying data distribution and explore patterns

or differences among data points. A well-known

example of unsupervised learning is the clustering

problem, which aims to identify meaningful groups

within the data, such as grouping virtual machines

based on resource utilization patterns. Figure 4 [2]

illustrates different machine learning methods,

including unsupervised learning.

Semi-supervised learning [Van Engelen

and Hoos, 2020]: This subfield of machine learning

aims to combine these two tasks, leveraging

information from one task to improve the

performance of the other. Semi-supervised learning

(SSL) algorithms often utilize unlabelled data points

to enhance the classification process, for example, by

utilizing additional data points with unknown labels.

On the other hand, understanding the similarity or

belongingness of certain data points to the same class

can assist in guiding the clustering process. By

incorporating labelled and unlabelled data, SSL

approaches can benefit from the advantages of

supervised and unsupervised learning to improve

overall learning and inference capabilities.

Kober et al. (2013) define Reinforcement

Learning as: RL differs from both supervised and

unsupervised learning in several aspects. Unlike

supervised learning, RL does not require labelled

input/output pairs or explicit correction of inferior

choices during training. Instead, RL involves an

agent interacting with an environment, learning to

make decisions through a balance between

exploration and exploitation. The agent receives

feedback in the form of rewards or penalties based

on its actions, which guide its learning process to

optimize long-term cumulative rewards. RL is

particularly suitable for problems where an agent

learns through trial and error to achieve a specific

goal in dynamic and uncertain environments. The

translator pays the agent for making wise choices or

acting in a certain way. If not, it would be approved.

Robotics and computer game agent science

frequently employ reinforcement learning.

Figure 4: Types of machine learning

5. MACHINE LEARNING FOR RESOURCE

MANAGEMENT IN SMART HOME

ENVIRONMENT

Smart home applications are highly popular

in the realm of IoT, as they integrate various

technologies such as security cameras, handheld

scanners, tablets, smart appliances, and wireless

sensors. These devices often have diverse access and

quality-of-service (QoS) requirements, and they

access network resources in a random manner. To

address resource allocation and random-access

challenges within the smart home environment, ML

methods like Q-learning and multi-armed bandit can

prove beneficial. These techniques enable effective

management and optimization of resources in smart

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

15

homes. This is so that various methods of

reinforcement learning may change with the network

environment and learn to do so dynamically (Ali et

al., 2020; Kanoun et al., 2016.).

Additionally, small sensors and small

payload data can be grouped using K-means

clustering and PCA, respectively. Be aware that

running conventional optimization and heuristics-

based techniques on small, low-cost, and energy-

constrained sensors can be quite expensive

computationally. Furthermore, because of the

heterogeneity of the devices and the overhead

associated with information updates and exchange,

traditional game theoretical approaches might not be

appropriate (Hussain, 2020).

6. MACHINE LEARNING TECHNIQUES IN

HETEROGENEOUS NETWORKS

(HETNETS)

Resource management in HetNets, where

cellular and small cell users coexist with different

Radio Access Technologies (RATs), poses several

challenges, such as cross- and co-tier interference,

mobility management, user association, RAT

selection, and self-organization. To address these

difficulties, researchers have explored ML-based

methods alongside traditional techniques like

optimization and heuristics (Omar et al., 2017). For

instance, Simsek et al. (2015) developed an RL-

based mechanism for inter-cell coordination and

handover in HetNets, enabling devices to learn

effective resource management. Vasudeva et al.

(2017) utilized fuzzy game-theory techniques to

reduce network energy consumption while

maintaining QoS levels. Perez et al. (2017) proposed

a unique cognitive RAT selection paradigm using

ML methods.

Furthermore, ML approaches have also

been employed for network self-organization,

encompassing self-configuration, self-organization,

and self-healing. Fan and Sengul (2014) investigated

the use of artificial neural networks (ANN) for self-

optimization in HetNets, while Alqerm and Shihada

(2018) proposed an efficient resource allocation

system utilizing online learning algorithms and Q-

value theory for QoS provisioning at high data rates.

A similar study on resource distribution in

heterogeneous cognitive radio networks can be

found in Fan and Sengul (2014).

7. MACHINE LEARNING TECHNIQUES IN

DEVICE-TO-DEVICE COMMUNICATIONS

D2D networks allow two devices in close

proximity to connect to one another without the need

for a centralized base station. A D2D network

offloads traffic from the primary BS by utilizing

proximity communications, boosting the network's

spectrum efficiency and Energy Efficiency (EE)

(Ansari et al., 2017). Low route loss allows for high

spectrum efficiency and sum rate, while low

transmission power between radios guarantees EE.

Numerous D2D network-related topics, including

resource and power allocation, mode selection,

proximity sensing, and interference avoidance, have

been treated in the literature. (Ahmed et al., 2018;

Liu et al., 2019). Recently, machine learning (ML)

has been used to handle a range of D2D

communication difficulties, including caching

(Cheng et al., 2018), security and privacy [Haus et

al., 2017], and others.

The efficient use of scarce resources to

meet the QoS requirements of all network entities,

including cellular and D2D users, presents a

significant problem for D2D networks. The study of

Maghsudi and Stańczak, (2014) developed a bandit-

based channel access method for a distributed D2D

system in which each pair chooses the best channel

for communication. This raises the rates of

individual D2D pairs while simultaneously reducing

interference from other users sharing the same

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

16

channels. Similarly to that, Asheralieva and

Miyanaga, (2016) presented another study on

channel selection with autonomous learning. The

best resource selection technique is identified using

Q-learning in a method for resource allocation in

D2D networks that was published by Luo et al.,

(2014). Similar to Khan et al., (2017), the authors

used cooperative RL to increase the individual

device throughputs and the sum rates of the system

by employing cooperative strategy planning to

allocate resources optimally. In order to create an

energy-efficient network solution, ML was used to

optimize power allocations for various D2D couples

(AlQerm and Shihada, 2017).

8. CONCLUSION

The aim of the study is to explain a review

of problems with resource management utilizing

machine learning techniques. The study employs a

qualitative methodology to illustrate how resource

management machine learning algorithms work. We

employ the qualitative method to identify notable

patterns that are suggestive of a specific occurrence.

In the context of IoT networks, resource

management plays a vital role alongside other

network administration tasks. The successful

implementation of diverse IoT networks requires

effective resource allocation and contextually

appropriate resource management decisions. Unlike

traditional approaches based on optimization and

heuristics, game theoretical and cooperative methods

are being utilized. ML and DL models, on the other

hand, have the capability to adapt and retrain

themselves by inferring actions from real-time

context information in response to environmental

changes. Particularly in complex, large-scale,

distributed, and dynamic IoT application scenarios,

ML and DL approaches hold significant promise for

automating resource management and decision-

making processes.

To solve complex radio resource

management problems in emerging IoT networks,

we recommend future scientific research. We must

carefully build solutions for these networks in

response to issues such as model uncertainty, model

interpretability, model training costs, and

generalization from test workloads to real

application user workloads.

9. REFERENCES

[1] Asheralieva, A., & Miyanaga, Y. (2016). An

autonomous learning-based algorithm for

joint channel and power level selection by

D2D pairs in heterogeneous cellular

networks. IEEE transactions on

communications, 64(9), 3996-4012.

[2] Cheng, P., Ma, C., Ding, M., Hu, Y., Lin, Z., Li,

Y., & Vucetic, B. (2018). Localized small

cell caching: A machine learning approach

based on rating data. IEEE Transactions on

Communications, 67(2), 1663-1676.

[3] Fang, Z. (2010). Resource management on cloud

systems with machine learning (Master's

thesis, Universitat Politècnica de

Catalunya).

[4] Goodfellow, I., Bengio, Y., & Courville, A.

(2016). Deep learning. MIT press.

[5] Ali, S., Ferdowsi, A., Saad, W., Rajatheva, N., &

Haapola, J. (2020). Sleeping multi-armed

bandit learning for fast uplink grant

allocation in machine type communications.

IEEE Transactions on Communications,

68(8), 5072-5086.

[6] Ding, C., He, X., Zha, H., & Simon, H. D. (2002,

December). Adaptive dimension reduction

for clustering high dimensional data. In 2002

IEEE International Conference on Data

Mining, 2002. Proceedings. (pp. 147-154).

IEEE.

[7] Auerbach, C., & Silverstein, L. B. (2003).

Qualitative data: An introduction to coding

and analysis (Vol. 21). NYU press.

[8] Bhatia, M. P. S., & Kumar, A. (2008).

Information retrieval and machine learning:

supporting technologies for web mining

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

17

research and practice. Webology, 5(2), 5.

[9] Bazi, Y., & Melgani, F. (2009). Gaussian process

approach to remote sensing image

classification. IEEE transactions on

geoscience and remote sensing, 48(1), 186-

197.

[10] Bianchini, R., Fontoura, M., Cortez, E., Bonde,

A., Muzio, A., Constantin, A. M., ... &

Russinovich, M. (2020). Toward ml-centric

cloud platforms. Communications of the

ACM, 63(2), 50-59.

[11] Buyya, R., Srirama, S. N., Casale, G., Calheiros,

R., Simmhan, Y., Varghese, B., ... & Shen,

H. (2018). A manifesto for future generation

cloud computing: Research directions for the

next decade. ACM computing surveys

(CSUR), 51(5), 1-38.

[12] Ciregan, D., Meier, U., & Schmidhuber, J.

(2012, June). Multi-column deep neural

networks for image classification. In 2012

IEEE conference on computer vision and

pattern recognition (pp. 3642-3649). IEEE.

[13] Chen, M., Challita, U., Saad, W., Yin, C., &

Debbah, M. (2019). Artificial neural

networks-based machine learning for

wireless networks: A tutorial. IEEE

Communications Surveys & Tutorials,

21(4), 3039-3071.

[14] Ahmed, M., Li, Y., Waqas, M., Sheraz, M., Jin,

D., & Han, Z. (2018). A survey on socially

aware device-to-device communications.

IEEE Communications Surveys & Tutorials,

20(3), 2169-2197.

[15] Barroso, L. A., Clidaras, J., & Hölzle, U. (2013).

The datacenter as a computer: An

introduction to the design of warehouse-

scale machines. Synthesis lectures on

computer architecture, 8(3), 1-154.

[16] Guha, S., Rastogi, R., & Shim, K. (2000).

ROCK: A robust clustering algorithm for

categorical attributes. Information systems,

25(5), 345-366.

[17] Celebi, M. E., & Aydin, K. (Eds.). (2016).

Unsupervised learning algorithms. Berlin:

Springer International Publishing.

[18] Deng, L., & Li, X. (2013). Machine learning

paradigms for speech recognition: An

overview. IEEE Transactions on Audio,

Speech, and Language Processing, 21(5),

1060-1089.

[19] Ansari, R. I., Chrysostomou, C., Hassan, S. A.,

Guizani, M., Mumtaz, S., Rodriguez, J., &

Rodrigues, J. J. (2017). 5G D2D networks:

Techniques, challenges, and future

prospects. IEEE Systems Journal, 12(4),

3970-3984.

[20] Hartigan, J. A., & Wong, M. A. (1979).

Algorithm AS 136: A k-means clustering

algorithm. Journal of the royal statistical

society. series c (applied statistics), 28(1),

100-108.

[21] Hastie, T., Tibshirani, R., Friedman, J. H., &

Friedman, J. H. (2009). The elements of

statistical learning: data mining, inference,

and prediction (Vol. 2, pp. 1-758). New

York: springer.

[22] Haus, M., Waqas, M., Ding, A. Y., Li, Y.,

Tarkoma, S., & Ott, J. (2017). Security and

privacy in device-to-device (D2D)

communication: A review. IEEE

Communications Surveys & Tutorials,

19(2), 1054-1079.

[23] Hussain, F., Hassan, S. A., Hussain, R., &

Hossain, E. (2020). Machine learning for

resource management in cellular and IoT

networks: Potentials, current solutions, and

open challenges. IEEE communications

surveys & tutorials, 22(2), 1251-1275.

[24] Ilager, S., Muralidhar, R., & Buyya, R. (2020,

October). Artificial intelligence (ai)-centric

management of resources in modern

distributed computing systems. In 2020

IEEE Cloud Summit (pp. 1-10). IEEE.

[25] Sen, P. C., Hajra, M., & Ghosh, M. (2020).

Supervised classification algorithms in

machine learning: A survey and review. In

Emerging technology in modeling and

graphics (pp. 99-111). Springer, Singapore.

[26] Kumar, J., Singh, A. K., & Buyya, R. (2021).

Self-directed learning-based workload

forecasting model for cloud resource

management. Information Sciences, 543,

345-366.

[27] Stilgoe, J. (2018). Machine learning, social

learning and the governance of self-driving

cars. Social studies of science, 48(1), 25-56.

[28] Xu, M., Tian, W., & Buyya, R. (2017). A survey

on load balancing algorithms for virtual

machines placement in cloud computing.

Concurrency and Computation: Practice and

Experience, 29(12), e4123.

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

18

[29] Jordan, M. I., & Mitchell, T. M. (2015).

Machine learning: Trends, perspectives, and

prospects. Science, 349(6245), 255-260.

[30] Scholz, T. M. (2017). Big data in organizations

and the role of human resource management:

A complex systems theory-based

conceptualization. Frankfurt a. M.: Peter

Lang International Academic Publishers.

[31] Kumar, J., & Singh, A. K. (2020). Cloud

datacenter workload estimation using error

preventive time series forecasting models.

Cluster Computing, 23(2), 1363-1379.

[32] Liu, S., Wu, Y., Li, L., Liu, X., & Xu, W.

(2019). A two-stage energy-efficient

approach for joint power control and channel

allocation in D2D communication. IEEE

Access, 7, 16940-16951.

[33] Maghsudi, S., & Stańczak, S. (2014). Channel
selection for network-assisted D2D

communication via no-regret bandit learning

with calibrated forecasting. IEEE

Transactions on Wireless Communications,

14(3), 1309-1322.

[34] Wenpeng, Y., & Schütze, H. (2015).

Multichannel variable-size convolution for

sentence classification [C]. In Proc of the

19th Conf on Computational Natural

Language Learning. Stroudsburg, PA: ACL

(pp. 204-214).

[35] Janai, J., Güney, F., Behl, A., & Geiger, A.

(2020). Computer vision for autonomous

vehicles: Problems, datasets and state of the

art. Foundations and Trends® in Computer

Graphics and Vision, 12(1–3), 1-308.

[36] Kumar, J., Singh, A. K., & Buyya, R. (2020).

Ensemble learning based predictive

framework for virtual machine resource

request prediction. Neurocomputing, 397,

20-30.

[37] Yoon, K. (2014). Convolutional Neural

Networks for Sentence Classification [OL].

arXiv Preprint.

[38] Mao, H., Schwarzkopf, M., Venkatakrishnan, S.

B., Meng, Z., & Alizadeh, M. (2019).

Learning scheduling algorithms for data

processing clusters. In Proceedings of the

ACM special interest group on data

communication (pp. 270-288).

[39] Khan, T., Tian, W., Zhou, G., Ilager, S., Gong,

M., & Buyya, R. (2022). Machine learning

(ML)–Centric resource management in

cloud computing: A review and future

directions. Journal of Network and

Computer Applications, 103405.

[40] Simsek, M., Bennis, M., & Güvenç, I. (2015,

March). Context-aware mobility

management in HetNets: A reinforcement

learning approach. In 2015 ieee wireless

communications and networking conference

(wcnc) (pp. 1536-1541). IEEE.

[41] Van Engelen, J. E., & Hoos, H. H. (2020). A

survey on semi-supervised learning.

Machine Learning, 109(2), 373-440.

[42] Perez, J. S., Jayaweera, S. K., & Lane, S. (2017,

June). Machine learning aided cognitive

RAT selection for 5G heterogeneous

networks. In 2017 IEEE International Black

Sea Conference on Communications and

Networking (BlackSeaCom) (pp. 1-5).

IEEE.

[43] Yang, J., Yu, K., Gong, Y., & Huang, T. (2009,

June). Linear spatial pyramid matching

using sparse coding for image classification.

In 2009 IEEE Conference on computer

vision and pattern recognition (pp. 1794-

1801). IEEE.

[44] Omar, M. S., Hassan, S. A., Pervaiz, H., Ni, Q.,

Musavian, L., Mumtaz, S., & Dobre, O. A.

(2017). Multiobjective optimization in 5G

hybrid networks. IEEE Internet of Things

Journal, 5(3), 1588-1597.

[45] Shahidinejad, A., Ghobaei-Arani, M., &

Masdari, M. (2021). Resource provisioning

using workload clustering in cloud

computing environment: a hybrid approach.

Cluster Computing, 24(1), 319-342.

[46] Jordan, M. I., & Mitchell, T. M. (2015).

Machine learning: Trends, perspectives, and

prospects. Science, 349(6245), 255-260.

[47] Li, X., Qian, Z., Lu, S., & Wu, J. (2013). Energy

efficient virtual machine placement

algorithm with balanced and improved

resource utilization in a data center.

Mathematical and Computer Modelling,

58(5-6), 1222-1235.

[48] Jeff, D. (2018). ML for system, system for ML,

keynote talk in Workshop on ML for

Systems, NIPS.

[49] Luo, Y., Shi, Z., Zhou, X. I. N., Liu, Q., & Yi,

Journal of Intelligent Systems and Applied Data Science (JISADS) ISSN (2974-9840) Online,Vol.1, Issue.1, (2023), PP. 9-19

19

Q. (2014, December). Dynamic resource

allocations based on Q-learning for D2D

communication in cellular networks. In 2014

11th international computer conference on

wavelet active media technology and

information processing (ICCWAMTIP) (pp.

385-388). IEEE.

[50] Kanoun, K., Tekin, C., Atienza, D., & Van Der

Schaar, M. (2016). Big-data streaming

applications scheduling based on staged

multi-armed bandits. IEEE Transactions on

Computers, 65(12), 3591-3605.

[51] Kumar, J., & Singh, A. K. (2018). Workload

prediction in cloud using artificial neural

network and adaptive differential evolution.

Future Generation Computer Systems, 81,

41-52.

[52] Simsek, M., Bennis, M., & Güvenç, I. (2015,

March). Context-aware mobility

management in HetNets: A reinforcement

learning approach. In 2015 IEEE Wireless

Communications and Networking

Conference (WCNC) (pp. 1536-1541).

IEEE.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

20

Emerging Trends in Cloud Computing: A Comprehensive Analysis of

Deployment Models and Service Models for Scalability, Flexibility, and

Security Enhancements.

Rajesh komar1, Arjun Patil 1*
Ragishkaa22@Gmail.Com, patil.Arjun2002@gmail.Com

1 Navodaya Institute of Technology, Raichur.

Abstract

 Cloud computing has revolutionized IT infrastructure management and service delivery across industries.

This study provides a comprehensive analysis of deployment models and service models in cloud computing,

focusing on their significance and implications for organizations. By examining each model's features, benefits,

challenges, and intrusion threats, decision-makers can make informed choices and implement adequate security

measures. The research contributes to existing knowledge by offering insights into cloud computing and

recommendations for secure adoption. The study begins with an overview of cloud computing, highlighting its

scalability and flexibility. It then explores deployment models (public, private, hybrid, community) and service

models (IaaS, PaaS, SaaS), assessing their characteristics and use cases. Intrusion threats are discussed, emphasizing

the need for robust security measures. Real-world case studies showcase successful models and security strategies.

This study equips organizations with the knowledge to leverage cloud computing while safeguarding their systems

and data.

 Keywords: Cloud computing, Service models, Cloud management, Cloud threats

1. INTRODUCTION

Cloud computing has emerged as a dominant

technology paradigm for managing IT infrastructure

and delivering services in various sectors. Accessing

computing resources on-demand over the internet has

revolutionized how organizations operate, providing

scalability, cost-effectiveness, and flexibility.

However, with the widespread adoption of cloud

computing, new challenges and risks, particularly in

the areas of deployment models and service models,

have come to the forefront.

This comprehensive study aims to provide an in-

depth analysis of deployment and service models in

cloud computing, highlighting their significance and

implications for organizations. By examining the

features, benefits, challenges, and potential intrusion

threats associated with each model, this research aims

to assist decision-makers in making informed choices

and implementing effective security measures.

To establish a strong foundation, it is essential to

understand the existing body of knowledge on cloud

computing and its various aspects. The work in [1]

provides a comprehensive view of cloud computing,

highlighting its essential characteristics and

advantages. Additionally, the NIST Definition of

Cloud Computing by Mell and Grance [2] offers a

widely accepted definition and framework for cloud

computing, providing a basis for further exploration.

Deployment models play a crucial role in

determining the architecture and accessibility of

cloud-based systems. The public cloud model,

characterized by shared infrastructure and services, is

explored in the research conducted by Buyya et al. [3]

and Vaquero et al. [4]. On the other hand, private

cloud models dedicated to a single organization are

discussed extensively in the literature (Dillon et al.

mailto:Ragishkaa22@Gmail.Com
mailto:patil.Arjun2002@gmail.Com

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

21

[5]; Rittinghouse & Ransome [6]). The hybrid cloud

model, combining public and private cloud elements,

and the community cloud model, shared among

organizations with common interests, are also

examined in this study.

Fig. 1 Cloud contact centre

Service models provide different levels of abstraction

and functionalities in cloud computing. The

Infrastructure as a Service (IaaS) model, which offers

virtualized computing resources, is explored in the

research by Subashini and Kavitha [7]. The Platform

as a Service (PaaS) model, providing a development

and deployment platform, is discussed by Wang et al.

[8]. Finally, Software as a Service (SaaS) model

enabling access to software applications over the

internet, is examined in the works of Hamdaqa et al.

[9] and Rimal et al. [10].

While the benefits of cloud computing are evident,

security remains a critical concern. Intrusion threats

pose risks to cloud-based systems, necessitating a

comprehensive understanding of potential

vulnerabilities. Ristenpart et al. [11] highlight the

need to explore information leakage in third-party

compute clouds, shedding light on the intrusion

threats associated with cloud computing

environments. Furthermore, Liang et al. [12] present

a comprehensive study on intrusion detection in the

cloud, emphasizing the importance of adequate

security measures.

Organizations can make informed decisions and

implement robust security strategies by delving into

the nuances of deployment and service models in

cloud computing and considering the potential

intrusion threats. This study contributes to the

existing body of knowledge by providing a

comprehensive analysis, paving the way for the

secure and effective adoption of cloud computing in

organizations.

2. BACKGROUND AND LITERATURE

REVIEW

2.1 Cloud Computing: An Overview

Cloud computing has emerged as a transformative

technology in IT infrastructure management and

service delivery. It allows organizations to access and

utilize virtualized computing resources over the

internet, providing scalability, cost-efficiency, and

flexibility [13]. This model has revolutionized

businesses by enabling on-demand resource

provisioning, dynamic scalability, and reduced

infrastructure costs.

Fig. 2 Cloud specifications

2.2 Deployment Models in Cloud Computing

Deployment models play a crucial role in defining the

architecture and ownership of cloud infrastructure.

The public cloud model, provided by third-party

service providers, offers a shared environment

accessible to multiple users (Almorsy et al. [14]).

Private clouds, on the other hand, are dedicated to a

single organization, providing enhanced control and

security (Rimal et al.[15]). Hybrid clouds combine

public and private cloud environments, allowing

organizations to leverage the benefits of both models

(Hassan et al. [16]). Community clouds are shared

among organizations with common interests, such as

those within the same industry or adhering to specific

regulations (Liu et al. [17]).

2.3 Intrusion Threats in Cloud Computing

The security of cloud computing environments is of

utmost importance due to potential intrusion threats.

Intruders may attempt to exploit vulnerabilities in the

system to gain unauthorized access, compromise data

confidentiality, or disrupt services. Therefore, it is

essential to comprehend and mitigate these intrusion

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

22

threats to ensure the integrity and security of cloud-

based systems.

Intrusion detection systems are vital in identifying

and responding to potential attacks in cloud

environments. These systems employ various

techniques, including anomaly detection and

signature-based methods, to detect and mitigate

intrusion attempts. Anomaly detection techniques

analyze system behaviour and network traffic

patterns to identify deviations from everyday

activities, while signature-based methods match

known patterns of malicious behaviour to detect

specific attacks (Zhang et al.[18]).

Fig. 3 Intrusion Threats in Cloud Computing

Researchers are exploring advanced techniques and

approaches to enhance the effectiveness of intrusion

detection and response mechanisms in cloud

computing. Machine learning algorithms, such as

support vector machines (SVMs) and artificial neural

networks (ANNs), are being applied to improve the

accuracy and efficiency of intrusion detection

systems. These algorithms can learn from historical

data and adapt to evolving attack patterns, enabling

proactive threat detection and timely response.

Furthermore, integrating threat intelligence feeds and

real-time monitoring systems is crucial in addressing

intrusion threats in cloud computing. Threat

intelligence provides valuable information about

known vulnerabilities, attack vectors, and malicious

activities, allowing organizations to stay updated on

emerging threats and proactively implement

appropriate security measures (Rauti et al. [19]).

Real-time monitoring systems continuously monitor

network traffic, system logs, and user activities to

detect and respond to suspicious activities promptly.

By combining advanced intrusion detection

algorithms, threat intelligence feeds, and real-time

monitoring systems, organizations can strengthen

their defences against intrusion threats in cloud

computing environments. These approaches enable

proactive identification and mitigation of attacks,

minimizing the risk of data breaches, service

disruptions, and unauthorized access.3.4 Summary of

Literature

The existing literature provides valuable insights into

various aspects of cloud computing, including

deployment models, service models, and intrusion

threats. Zheng et al. [20] offer a comprehensive

survey on cloud computing security, addressing

challenges and mitigation strategies. Teng et al. [21]

provide an in-depth exploration of cloud deployment

models, highlighting their characteristics and

considerations. Finally, Almorsy et al. [22] present a

comprehensive perspective on service models in

cloud computing, discussing their features and

applications.

3. METHODOLOGY

This section explains the research approach, data

collection methods, analysis techniques, and criteria

for selecting relevant research articles, papers, and

industry reports for the comprehensive study on

cloud computing deployment and service models.

3.1 Research Approach

For this study, a systematic literature review

approach was employed. This approach involves an

organized and structured evaluation of existing

literature to understand the topic comprehensively.

The literature review follows a predefined protocol,

ensuring a rigorous and unbiased analysis of the

available literature. By adopting this approach, we

aimed to capture various perspectives, theories, and

findings related to deployment and service models in

cloud computing.

3.2 Data Collection Methods

The data collection process involved searching and

accessing various academic databases, including

IEEE Xplore, ACM Digital Library, and Google

Scholar. These databases were selected for their

comprehensive computer science and information

technology literature coverage. Relevant keywords,

such as "cloud computing," "deployment models,"

"service models," and "intrusion threats," were used

to search. The search was performed across title,

abstract, and full-text fields to ensure the inclusion of

relevant articles.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

23

The inclusion criteria for selecting research articles,

papers, and industry reports were based on several

factors. First, relevance to the research topic was

considered, focusing on publications discussing

deployment and service models in cloud computing.

Second, with a preference for recent publications, the

publication date was supposed to ensure the inclusion

of the most up-to-date information. Third, priority

was given to peer-reviewed journal articles,

conference papers, and reports from reputable

sources to ensure the credibility and academic rigour

of the selected sources.

3.3 Analysis Techniques

The analysis of the collected literature involved a

thorough review and extraction of critical

information. The selected articles and reports were

carefully read, and relevant data points were

extracted, including definitions, characteristics,

advantages, and limitations of different cloud

computing deployment and service models. The

extracted information was then organized and

synthesized to identify common themes, patterns, and

trends across the literature.

A systematic approach was employed to ensure the

reliability and validity of the analysis. The extracted

data were cross-checked and reviewed by multiple

researchers involved in the study. Any discrepancies

or differences in interpretation were resolved through

discussion and consensus. This collaborative

approach helped minimize bias and ensure the

accuracy of the analysis.

3.4 Criteria for Selecting Relevant Research Articles,

Papers, and Industry Reports

The criteria used to select relevant research articles,

papers, and industry reports were designed to ensure

the inclusion of high-quality and reputable sources.

The publication date was considered to include recent

publications that reflect the latest developments in

cloud computing. Relevance to the research topic was

a crucial criterion, focusing on publications that

specifically addressed deployment and service

models in cloud computing.

To ensure academic rigour, priority was given to

peer-reviewed journal articles and conference papers.

These sources undergo a rigorous review process by

experts in the field, ensuring the quality and validity

of the research findings. Additionally, reports and

publications from reputable industry sources were

included to capture practical insights and real-world

experiences related to cloud computing deployment

and service models.

By employing these rigorous methodologies, we

aimed to ensure a comprehensive, objective, and

reliable analysis of cloud computing deployment and

service models, drawing insights from various

scholarly and industry sources.

4. DEPLOYMENT MODELS IN CLOUD

COMPUTING

Cloud computing offers different deployment models

for organizations based on their requirements and

desired resource-sharing levels. The primary

deployment models in cloud computing include

public, private, hybrid, and community clouds.

Public Cloud: The public cloud deployment model is

provided by third-party service providers and offers

computing resources over the internet. This model

shares resources among multiple organizations,

resulting in cost savings and scalability.

Private Cloud: The private cloud deployment model

is dedicated to a single organization and offers

enhanced control, security, and privacy compared to

the public cloud. It is either hosted on-premises or by

a third-party provider.

Hybrid Cloud: The hybrid cloud deployment model

combines the features of public and private clouds,

offering a mix of on-premises infrastructure and off-

premises resources. It provides flexibility and agility

by allowing organizations to leverage the benefits of

both models.

Community Cloud: The community cloud

deployment model is shared among organizations

with common interests, such as those within the same

industry or adhering to specific regulations. It enables

resource sharing while maintaining control and

security.

Organizations need to evaluate their requirements,

data sensitivity, regulatory compliance, scalability

needs, and budget to select the appropriate

deployment model for their cloud computing

environment.

5. SERVICE MODELS IN CLOUD

COMPUTING

Cloud computing offers different service models that

define organizations' control and responsibility over

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

24

their computing resources. The three main service

models in cloud computing are Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS).

Fig. 4 Service Models in Cloud Computing

5.1 Infrastructure as a Service (IaaS):

IaaS provides virtualized computing resources,

including virtual machines, storage, and networks, as

a service. Organizations have complete control over

the operating systems, applications, and data hosted

on the infrastructure. IaaS allows organizations to

scale their infrastructure up or down based on

demand, providing flexibility and cost-efficiency. It

is suitable for organizations that require high control

and customization over their computing resources.

5.2 Platform as a Service (PaaS):

PaaS offers a platform for organizations to develop,

deploy, and manage applications without controlling

the underlying infrastructure. It provides a pre-

configured environment that includes the operating

system, development tools, and runtime frameworks.

PaaS enables organizations to focus on application

development and deployment without worrying

about infrastructure management. It offers

scalability, automatic resource provisioning, and

support for multiple programming languages and

frameworks.

5.3 Software as a Service (SaaS):

SaaS provides ready-to-use applications and

Software over the internet. Organizations access

these applications through a web browser or API

without the need for installation or maintenance.

SaaS offers a range of applications, such as customer

relationship management (CRM), enterprise resource

planning (ERP), and collaboration tools. It eliminates

the need for organizations to manage infrastructure,

updates, and maintenance, allowing them to focus on

using the Software for their business operations.

6. BENEFITS AND CONSIDERATIONS OF

DEPLOYMENT AND SERVICE MODELS

6.1 Benefits of Deployment Models:

Public Cloud: Cost savings, scalability, and

accessibility.

Private Cloud: Enhanced control, security, and

privacy.

Hybrid Cloud: Flexibility, scalability, and optimized

resource allocation.

Community Cloud: Resource sharing, collaboration,

and industry-specific solutions.

6.2 Benefits of Service Models:

IaaS: Control, flexibility, and scalability of

infrastructure resources.

PaaS: Streamlined application development,

automatic resource provisioning, and multi-language

support.

SaaS: Easy accessibility, reduced IT management

burden, and rapid deployment.

Organizations must consider several factors when

choosing the appropriate deployment and service

models for their cloud computing environment.

These factors include data security and privacy

requirements, compliance regulations, scalability

needs, cost considerations, and the level of control

and customization required.

7. CHALLENGES AND CONSIDERATIONS IN

CLOUD DEPLOYMENT

While cloud computing offers numerous benefits,

organizations must address several challenges and

considerations when deploying cloud-based

solutions. Understanding and mitigating these

challenges is essential for successful cloud

implementation.

7.1 Security and Privacy:

Security and privacy are major concerns in cloud

computing. Organizations must protect their data and

applications from unauthorized access, breaches, and

other security threats. They should employ robust

authentication mechanisms, encryption techniques,

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

25

and access controls to safeguard sensitive

information. Additionally, organizations must

understand the cloud service provider's data privacy

policies and regulations to ensure compliance with

applicable laws and protect user privacy.

7.2 Compliance and Legal Issues:

Organizations must adhere to Certain industries' and

regions' specific compliance requirements and

regulations when deploying cloud solutions.

Compliance standards such as GDPR (General Data

Protection Regulation) and HIPAA (Health

Insurance Portability and Accountability Act) impose

strict guidelines for handling sensitive data.

Organizations need to assess the compliance

capabilities of their cloud service providers and

ensure that their cloud deployment meets the

necessary legal and regulatory requirements.

7.3 Data Portability and Vendor Lock-In:

Organizations should consider the ease of migrating

their data and applications between different cloud

providers or back to an on-premises environment.

Vendor lock-in, where organizations become highly

dependent on a specific cloud provider's service, can

hinder portability and limit flexibility. Evaluating

interoperability standards, data formats, and exit

strategies upfront can help mitigate the risks of

vendor lock-in and ensure data portability.

8. EMERGING TECHNOLOGIES IN CLOUD

COMPUTING

Cloud computing continues to evolve, driven by

technological advancements and emerging trends.

Understanding these trends can provide insights into

the future of cloud computing and help organizations

make informed decisions about their cloud

deployments.

8.1 Edge Computing:

Edge computing aims to bring computing resources

closer to the data source or end-users, reducing

latency and improving performance. By

decentralizing computing power, edge computing

enables real-time data processing and analysis,

making it ideal for applications that require low

latency, such as Internet of Things (IoT) devices.

Organizations can leverage edge computing with

cloud computing to enhance their overall

infrastructure and deliver faster and more responsive

services.

8.2 Serverless Computing:

Serverless computing, or Function as a Service

(FaaS), allows developers to execute code without

explicitly managing or provisioning servers. With

serverless computing, organizations pay only for the

actual code execution time, leading to cost savings

and greater scalability. Serverless architectures

simplify application development and deployment, as

developers can focus solely on writing code rather

than managing infrastructure.

8.3 Multi-cloud and Hybrid Cloud Strategies:

Organizations are increasingly adopting multi-cloud

and hybrid cloud strategies to leverage the benefits of

multiple cloud providers and combine on-premises

and off-premises resources. Multi-cloud

environments provide organizations with flexibility,

cost optimization, and risk mitigation by distributing

workloads across different cloud platforms. Hybrid

cloud strategies offer the ability to combine the

benefits of private and public clouds, allowing

organizations to maintain control over critical data

while taking advantage of the scalability and cost-

effectiveness of the public cloud.

Fig. 5 Hybrid Cloud

9. FUTURE TRENDS AND RESEARCH

DIRECTIONS

Cloud computing is a dynamic field that continues to

evolve, driven by technological advancements and

emerging trends. Several areas of future research and

development hold the potential to shape the future of

cloud computing.

9.1 Artificial Intelligence and Machine Learning in

Cloud Computing:

Integrating artificial intelligence (AI) and machine

learning (ML) capabilities into cloud computing can

unlock new possibilities for intelligent data analysis,

automation, and decision-making. Future research

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

26

should focus on developing AI-driven cloud services,

optimizing resource allocation for ML workloads,

and addressing the challenges of training and

deploying ML models in distributed cloud

environments.

9.2 Quantum Computing and Cloud Services:

Quantum computing has the potential to

revolutionize cloud computing by enabling complex

computations and solving problems that are currently

infeasible with classical computing. Research efforts

should explore the integration of quantum computing

with cloud services, such as developing quantum

algorithms, enhancing security through quantum

encryption, and investigating the scalability and

performance of quantum cloud platforms.

9.3 Security and Privacy Enhancements:

As the importance of data security and privacy

increases, future research should focus on developing

robust security mechanisms and privacy-preserving

techniques for cloud computing. Areas of interest

include secure data sharing, homomorphic

encryption, secure multiparty computation, and

advanced threat detection and mitigation strategies to

address evolving cybersecurity threats.

9.4 Green Computing and Sustainability:

With the growing energy consumption of data

centres, research efforts should aim to improve the

energy efficiency and sustainability of cloud

computing infrastructures. This includes developing

energy-aware resource management techniques,

optimizing data centre operations, exploring

renewable energy sources for powering data centres,

and designing eco-friendly hardware and cooling

solutions.

9.5 Serverless Computing and Function as a Service

(FaaS):

Serverless computing is gaining popularity as it

allows running applications without managing

servers or infrastructure. Future research should

focus on optimizing serverless architectures,

improving resource allocation, and enhancing the

scalability and performance of Function as a Service

(FaaS) platforms.

9.6 Internet of Things (IoT) and Cloud Integration:

The proliferation of IoT devices generates massive

amounts of data that can be processed and analyzed

in the cloud. Future research should explore efficient

ways to integrate IoT devices with cloud platforms,

develop IoT-specific cloud services, and address data

storage, security, and real-time analytics challenges.

9.7 Hybrid Cloud Orchestration and Management:

As organizations adopt hybrid cloud environments,

research efforts should focus on developing effective

orchestration and management frameworks. This

includes seamless integration between private and

public clouds, workload migration strategies, and

unified management interfaces for hybrid cloud

deployments.

9.8 Blockchain and Distributed Ledger Technologies

in Cloud Computing:

Blockchain technology can enhance cloud

computing's trust, transparency, and security. Future

research should investigate blockchain integration

with cloud services, addressing challenges such as

scalability, privacy, and consensus algorithms to

enable secure and decentralized cloud deployments.

9.9 Edge Intelligence and Fog Computing:

Edge intelligence leverages the power of edge

devices to perform data processing and analysis

closer to the data source, reducing latency and

bandwidth usage. Future research should focus on

developing intelligent edge computing frameworks,

optimizing resource management in fog

environments, and enabling real-time decision-

making at the network edge.

9.10 Data Governance and Compliance in Cloud

Environments:

As data regulations become more stringent, future

research should explore effective data governance

and compliance frameworks for cloud computing.

This includes data classification, access control

mechanisms, auditing, and accountability in multi-

tenant cloud environments to ensure compliance with

data protection and privacy regulations.

9.11 Intrusion Detection and Threat Intelligence in

Cloud Computing:

With the increasing complexity and sophistication of

cyber threats, research efforts should focus on

developing advanced intrusion detection and threat

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

27

intelligence mechanisms tailored explicitly for cloud

computing environments. In addition, the

development of intelligent algorithms and machine

learning models to detect and mitigate intrusion

attempts, as well as integrating threat intelligence

feeds and real-time monitoring systems to enhance

the security posture of cloud deployments.

Furthermore, research should explore using anomaly

detection techniques and behavioural analysis to

identify and respond to emerging and zero-day

threats in cloud environments. By enhancing the

capabilities of intrusion detection and threat

intelligence in cloud computing, organizations can

strengthen their security defences and protect their

data and applications from evolving cyber threats. By

exploring these future trends and research directions,

the cloud computing community can continue to

innovate and shape the future of cloud-based

technologies, addressing emerging challenges and

unlocking new opportunities for organizations across

various industries.

10. CONCLUSION:

In conclusion, this paper comprehensively studied

cloud computing deployment and service models. It

explored the different deployment models, including

public, private, hybrid, and community clouds,

highlighting their benefits and considerations. The

paper also discussed the service models of cloud

computing, namely infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a

Service (SaaS), emphasizing their features and

advantages.

Through a thorough literature review, the paper

presented the background and discussed the latest

research and developments in cloud computing. It

highlighted the challenges and considerations in

cloud deployment, including security, compliance,

and data portability.

Furthermore, the paper examined the future trends

and emerging technologies in cloud computing, such

as edge computing, serverless computing, and multi-

cloud strategies. It outlined potential areas of

research and development, including AI and ML

integration, quantum computing, security

enhancements, and green computing.

Overall, this study provides valuable insights into the

deployment models, service models, challenges, and

future trends in cloud computing. It serves as a

foundation for organizations and researchers to

understand and explore the potential of cloud

computing, enabling them to make informed

decisions and contribute to advancing this rapidly

evolving field.

REFERENCES:

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D.,

Katz, R., Konwinski, A., ... & Zaharia, M. (2010). A

view of cloud computing. Communications of the

ACM, 53(4), 50-58.

[2] Mell, P., & Grance, T. (2011). The NIST

definition of cloud computing. National Institute of

Standards and Technology, 53(6), 50.

[3] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J.,

& Brandic, I. (2009). Cloud computing and emerging

IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation

Computer Systems, 25(6), 599-616.

[4] Vaquero, L. M., Rodero-Merino, L., Caceres, J.,

& Lindner, M. (2008). A break in the clouds: towards

a cloud definition. ACM SIGCOMM Computer

Communication Review, 39(1), 50-55.

[5] Dillon, T., Wu, C., & Chang, E. (2010). Cloud

computing: issues and challenges. In 2010 24th IEEE

international conference on advanced information

networking and Applications (pp. 27-33). IEEE.

[6] Rittinghouse, J. W., & Ransome, J. F. (2016).

Cloud computing: implementation, management, and

security. CRC Press.

[7] Subashini, S., & Kavitha, V. (2011). A survey on

security issues in service delivery models of cloud

computing. Journal of Network and Computer

Applications, 34(1), 1-11.

[8] Wang, L., von Laszewski, G., Younge, A., He, X.,

Kunze, M., Tao, J., ... & Fu, C. (2018). Cloud

computing: a perspective study. New Generation

Computing, 36(4), 313-345.

[9] Hamdaqa, M., Sahandi, R., & Asim, M. (2018). A

survey of cloud service models. Future Generation

Computer Systems, 78, 535-550.

[10] Rimal, B. P., Jukan, A., & Katsaros, D. (2018).

An overview of service models in cloud computing.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online Vol.1, Issue.1, (2023), PP. 20-28

28

Journal of Network and Computer Applications, 67,

106-127.

[11] Ristenpart, T., Tromer, E., Shacham, H., &

Savage, S. (2009). Hey, you, get off of my cloud:

exploring information leakage in third-party compute

clouds. In Proceedings of the 16th ACM conference

on Computer and communications security (pp. 199-

212).

[12] Liang, X., Lu, R., & Yang, L. T. (2016). A

comprehensive study on security of cloud computing.

In IEEE transactions on parallel and distributed

systems, 27(2), 478-490.

[13] Botta, A., et al. (2016). Integration of Cloud

computing and Internet of Things: A survey. Future

Generation Computer Systems, 56, 684-700.

https://doi.org/10.1016/j.future.2015.09.021

[14] Almorsy, M., Grundy, J., & Müller, I. (2016).

An analysis of the cloud computing security problem.

arXiv preprint arXiv:1609.01107.

[15] Rimal, B. P., Choi, E., & Lumb, I. (2018). A

taxonomy and survey on autonomic management of

applications in cloud computing. IEEE

Communications Surveys & Tutorials, 20(1), 674-

711.

[16] Hassan, M. M., Zhang, H., Nasser, Y., & Al-

Salman, A. (2018). A hybrid cloud architecture for

big data analytics. IEEE Access, 6, 24857-24867.

[17] Liu, J., Liu, C., Chen, S., Chen, C., & Ning, H.

(2020). A cooperative game theory based resource

allocation in community cloud computing. Future

Generation Computer Systems, 102, 287-297.

[18] Zhang, Q., Zhang, Z., & Zhang, Q. (2019). An

intrusion detection system for cloud computing based

on hierarchical deep belief network. Future

Generation Computer Systems, 92, 214-224.

[19] Rauti, S., Zavarsky, P., Stavrou, A., & Nucci, A.

(2020). Cyber threat intelligence for cloud computing

security: Review, potential, and challenges. Journal

of Network and Computer Applications, 170,

102798. doi:10.1016/j.jnca.2020.102798

[20] Zheng, R., Li, Z., Zhou, Q., & Zhou, W. (2021).

Security challenges and mitigation strategies in cloud

computing: A comprehensive survey. Future

Generation Computer Systems, 118, 627-647.

[21] Teng, F., Yu, S., & Li, H. (2020). A

comprehensive survey on cloud deployment models.

Future Generation Computer Systems, 108, 347-359.

[22] Almorsy, M., Grundy, J., & Ibrahim, A. (2021).

A comprehensive review of service models in cloud

computing. Journal of Systems and Software, 179,

110911.

https://doi.org/10.1016/j.future.2015.09.021

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 29-34

29

Machine Learning-Based Mobile Payment System for Empowering Low-

Income Earners in India

Cleodine W Chiome1 , Abdul Basit Darem2*

Basit.darem@yahoo.com
1PG Dept Of CS, St. Philomena’s College, Mysore, India

2Northern Border University, KSA.

Abstract

 In the contemporary era, mobile phones have become indispensable, serving as communication devices and

offering myriad applications. Among these applications, mobile payment systems hold great potential in driving the

transition to a cashless economy. However, India's current mobile payment landscape is limited by its dependency on

bank accounts. This poses a significant challenge for low-income earners who lack access to banking services or

perceive minimal benefits in owning an account due to their limited financial resources. As a result, they are unable

to leverage existing mobile payment systems. Despite bank branches in approximately 40,000 out of 600,000 Indian

villages, a staggering 80% of households possess mobile phones. The heavy reliance on cash-based transactions leaves

India's economy susceptible to disruptions. To address this, the proposed research project aims to develop a user-

friendly and secure mobile payment system that operates independently of bank accounts, ensuring inclusivity for all

individuals, irrespective of their banking status.

Moreover, the system will be compatible with any mobile phone and will not require an internet connection. By

implementing such an innovative system, India can make significant strides towards achieving a truly cashless

economy. Additionally, integrating machine learning techniques in the system can enhance security, fraud detection,

and user personalization, further optimizing the user experience and driving the adoption of mobile payments.

Keywords: communication, payment system, machine learning, user experience of mobile payments

1. INTRODUCTION

Mobile communications technology has quickly

become the world's most common way of transmitting

voice, data, and services in the developing world. They

carry the potential to be the best media for the

dissemination of information because mobile services

are widely available and inexpensive [1]. Mobile

phones have been proven to provide reliable access to

information for people in low- and mid-income

countries, where other forms of communication

perform poorly. As a result of the widespread adoption

of mobile phones, there has been an increase in the

number of Mobile Applications (M-Services) used as

a tool for disseminating different types of information

to people [2].

Mobile payment is using mobile devices, such as

mobile phones, to facilitate payment transactions.

Mobile devices can be used for both proximity and

remote payments. Mobile payment systems have

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 29-34

30

increased significantly, to the point where a cashless

world is possible, including in India. According to a

source, worldwide mobile commerce revenues

amounted to 96.34 billion U.S. dollars in 2015 and are

set to surpass 693 billion U.S. dollars in 2019 [3][4].

This vast increase in mobile commerce revenues

demonstrates the global adaptation to mobile-related

services.

Mobile payment systems incorporate a combination of

technological innovations developed throughout

mobile evolution. These innovations include

messaging-based payment services, such as short

message (SMS) and multimedia message (MMS)-

initiated payments, stored value-based payment

services like mobile wallets and accounts, and mobile

identification and authorization-based payment

services that utilize secure wireless identification

modules (SWIM/WIM) along with wireless public key

infrastructure (WPKI/PKI) or other identification and

authorization schemes for digital signatures and

certificates in high-value payment transactions [5].

Looking at a worldwide perspective, mobile

applications and services have increased, providing

payment solutions for real-time payments, such as in

restaurants, shops, vending machines, ticketing, the

purchase of mobile services, mobile commerce

(applications, software, mobile games), electronic

banking, online banking, and peer-to-peer transfers

[6].

Several mobile payment systems currently exist,

utilizing different financial payment methods,

including cryptocurrencies like Bitcoin, direct debit,

credit cards, and payment against service bills [7].

The cash crisis in India has been a significant issue

since the demonetization of old currency notes,

leading to a cash shortage and impacting the economy

and daily transactions. This problem particularly

affects low-income earners relying heavily on cash-

based transactions for their livelihoods, including

informal businesses like vendors, rickshaw owners,

and farmers. Many individuals lack access to bank

accounts, especially in rural areas where banks and

ATMs are scarce. The limited penetration of banking

services in villages exacerbates the cash crisis, with a

shortage of ATMs and entire villages lacking banking

facilities [8].

To address these challenges, integrating machine

learning (ML) technologies can offer potential

solutions. ML algorithms can help analyse transaction

patterns and user behaviour to develop models that

optimize cash flow, predict demand, and manage

supply. Such models can aid in ensuring the

availability of cash at ATMs, reducing instances of dry

ATMs and providing greater access to cash for low-

income earners. Additionally, ML can identify areas

with higher cash demands and optimize the

deployment of ATMs or other cash dispensing

services to meet the population's needs.

Furthermore, ML algorithms can contribute to

developing mobile payment systems that cater to low-

income earners without bank accounts. These systems

can leverage alternative authentication methods, such

as biometrics or unique identification numbers, to

enable secure and inclusive mobile payment

transactions. ML-based fraud detection techniques can

also enhance the security of these systems, mitigating

risks associated with digital transactions [9].

By integrating ML technologies into cash

management and mobile payment systems, the

challenges faced by low-income earners in accessing

and utilizing cash can be addressed more effectively.

These advancements can potentially contribute to

India's more inclusive and resilient financial

ecosystem.

2. LITERATURE REVIEW

Mobile payment systems have gained significant

attention in recent years, revolutionizing how people

transact. With the proliferation of smartphones and

technological advancements, mobile payment systems

have become an integral part of our daily lives. This

part aims to provide a comprehensive overview of the

existing research and developments in mobile

payment systems. It focuses on their impact on low-

income earners in India and the integration of machine

learning (ML) techniques.

Mobile Payment Systems and Financial Inclusion:

Mobile payment systems can potentially address

financial inclusion challenges faced by low-income

earners in India. Research by [10] highlights the

significance of mobile phones in providing reliable

access to financial services in low and middle-income

countries. By leveraging mobile payment systems,

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 29-34

31

individuals without bank accounts can still participate

in the digital economy, making transactions and

accessing financial services more easily.

Challenges Faced by Low-Income Earners:

Low-income earners in India often encounter

difficulties accessing traditional banking services due

to limited infrastructure and low bank penetration in

rural areas. According to the World Bank, access to

banking services remains challenging for millions in

India. These challenges hinder financial inclusion and

limit the ability of low-income earners to engage in

digital payment systems.

Machine Learning in Mobile Payment Systems:

Integrating machine learning techniques in mobile

payment systems offers numerous opportunities for

improving security, personalization, and fraud

detection. ML algorithms can analyze transaction

patterns, detect anomalies, and accurately identify

fraudulent activities. For example, [11] explore using

ML and user behaviour analysis to enhance mobile

payment security and detect suspicious activities in

real-time.

Figure 2.1 NFC Mobile Payment System

Adoption and Acceptance of Mobile Payment

Systems:

The widespread adoption and acceptance of mobile

payment systems are essential for their success.

Several factors influence user adoption, including

trust, convenience, security, and perceived usefulness.

A study by [12] highlights the importance of user trust

and security concerns in influencing adoption

behaviour. Ensuring the security and privacy of user

data is crucial in building trust among low-income

earners and encouraging their adoption of mobile

payment systems.

User Experience and Design Considerations:

The user experience plays a vital role in the success of

mobile payment systems. A user-friendly interface,

simple design, and ease of use are critical factors for

encouraging adoption among low-income earners.

Studies by [14] emphasize the need for intuitive

interfaces and seamless user experiences to enhance

the acceptance and usability of mobile payment

systems.

The literature reviewed demonstrates the significant

potential of mobile payment systems in promoting

financial inclusion among low-income earners in

India. Integrating machine learning techniques in

mobile payment systems can enhance security, detect

fraud, and improve user experience. However,

challenges such as limited infrastructure, trust, and

security concerns must be addressed to ensure low-

income earners' successful adoption and usage of

mobile payment systems. Future research should focus

on developing innovative solutions that address these

challenges and promote the widespread adoption of

mobile payment systems among underserved

populations.

3. METHODOLOGY AND SYSTEM

STRUCTURE

The proposed mobile payment system aims to leverage

machine learning (ML) techniques to create a simple

and secure solution that can be used with any type of

mobile phone without requiring an internet

connection. The system will utilize USSD technology

for communication. It will not be directly connected to

the customer's bank account, making it accessible to

holders and non-account holders.

One key aspect of the proposed system is integrating

digital services with payment-on-site terminals at

grocery shops and fuel stations. This feature

eliminates the need for physical wallets and loose

currency, providing convenience to users.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 29-34

32

Additionally, the system will enable person-to-person

money transfers. The primary focus is to assist low-

income earners in their daily transactions, but the

system can be used by anyone, regardless of income

level, location, or mobile device type.

Figure 2. System Architecture

The project's objectives include designing a user-

friendly mobile payment system that requires no prior

training and is compatible with any mobile phone or

tablet. The system should prioritize speed and

efficiency to eliminate queues and delays during

transactions, ensuring user satisfaction. Security is

paramount, with robust measures implemented to

protect user information and prevent unauthorized

access.

Moreover, the system aims to be highly accessible,

allowing users to make payments anytime and

anywhere. Unlike traditional banks with limited

operating hours, the mobile payment system will be

available 24/7. It should also seamlessly integrate with

various payment terminals, enabling transactions in

diverse settings such as shops, malls, supermarkets,

hotels, restaurants, and public transportation.

Lastly, the system emphasizes safety, reliability, and

error prevention. The ML techniques incorporated will

enhance the system's capabilities in detecting and

preventing fraudulent activities, ensuring user trust

and confidence.

GSM (Global System for Mobile Communications,

originally Groupe Spécial Mobile) is a standard

developed by the European Telecommunications

Standards Institute (ETSI) to describe the protocols for

second-generation (2G) digital cellular networks used

by mobile phones, first deployed in Finland in July

1991. GSM is a circuit-switched system that divides

each 200 kHz channel into eight 25 kHz timeslots.

GSM operates on the mobile communication bands

900 MHz and 1800 MHz in most parts of the world. In

the US, GSM operates in the bands 850 MHz and 1900

MHz.

GSM makes use of narrowband Time Division

Multiple Access (TDMA) technique for transmitting

signals. GSM was developed using digital technology.

It has the ability to carry 64 kbps to 120 Mbps of data

rates. Despite the ongoing development of 5G, the

already existing third generation (3G) UMTS

standards developed by the 3GPP and fourth-

generation (4G) LTE advanced standards; GSM

technology is still the backbone of mobile

communications. Since 2014 it has over 90% of its

market share, operating in over 219 countries and

territories with more than one billion users.

The proposed mobile payment system architecture

described above comprises four modules: cash in, cash

out, person-to-person, and customer-to-merchant.

The architecture includes the following components:

Users/Customers: Users must register with their

mobile numbers to access the mobile wallet. They can

transfer funds between users via USSD codes over the

GSM network. Users can also make payments at

merchants' shops using their mobile phones.

GSM (Global System for Mobile Communications):

This project works with GSM-supported mobiles and

integrates with all mobile types through USSD

(Unstructured Supplementary Service Data), a

communication protocol used for sending text

messages between a mobile phone and an application

server.

Merchant: Merchants, including shop owners and

business owners, can receive user payments through

the mobile payment system. The funds received by

merchants are automatically deposited into their bank

accounts.

Merchant Bank Account: The merchant bank account

holds the funds received from users when they

https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/4G
https://en.wikipedia.org/wiki/LTE_Advanced

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 29-34

33

purchase goods and services from merchants through

the mobile payment system.

Financial Institution: A financial institution is

responsible for storing and managing users' funds,

eliminating the need for users to have a traditional

bank account. The financial institution securely holds

the users' money.

Web Server: The web server hosts the system's

databases, which store and manage users' account

information. The financial institution uses the

webserver to handle user accounts and transactions.

Database: The database is an organized collection of

data that supports storing and retrieving information.

In the mobile payment system, it stores schemas,

tables, queries, reports, and other objects related to

user accounts and transaction data.

The system enables users to utilize the mobile

payment system using GSM-supported mobiles

associated with mobile numbers linked to SIM cards.

Users can transfer funds using USSD, compatible with

any mobile phone. User accounts are password

protected. Merchants receive payments through the

mobile payment system, and the funds are directly

deposited into their bank accounts.

4. DISCUSSION

Mobile payment systems have been in existence in

India for some time now, with numerous systems

currently being utilized. These systems represent a

significant step towards achieving a cashless economy

in India. However, the existing mobile payment

systems are all linked to bank accounts, making them

inaccessible to individuals who do not possess a bank

account. In India, there is a substantial population

residing in rural areas where banking facilities are

scarce. Many villages lack banks altogether, while

others have only a single bank branch and a shared

ATM serving a population of over 100,000 people

[15]. As a result, a significant portion of the rural

population does not utilize formal banking services.

According to the Global Findex survey, 43% of Indian

bank account holders have inactive accounts, while

others maintain zero balances. These statistics hinder

the growth of mobile payment systems in India, as

they demonstrate the limited adoption and utilization

of banking services among the population.

To address these challenges and promote the growth

of mobile payments, this project aims to develop a

mobile payment system that accommodates low-

income earners without access to traditional banking

services. The system is designed to be compatible with

any type of mobile device, whether it is a smartphone

or a basic feature phone, using USSD (Unstructured

Supplementary Service Data) technology. It enables

fund transfers between individuals and facilitates

payments at various establishments such as shops,

supermarkets, malls, and cinemas. Moreover, the

system has the capability to integrate with existing

registered systems, ensuring widespread acceptance

and interoperability. By eliminating the need for

physical cash transactions, the system helps alleviate

the impact of cash shortages on the economy.

5. CONCLUSION

The proposed mobile payment system for low-income

earners in India combines mobile technology with

machine learning techniques to create a simple and

secure solution for everyday transactions. By

leveraging machine learning algorithms, the system

enhances security, detects fraudulent activities, and

personalizes user experiences. With compatibility

across any mobile device and USSD technology, the

system ensures accessibility without requiring an

internet connection.

This innovative approach addresses the challenges

individuals face without access to traditional banking

services, promoting financial inclusion and

contributing to the advancement of a cashless

economy. Future enhancements can extend the

system's capabilities, such as enabling online

shopping, facilitating international fund transfers, and

providing personalized user recommendations.

Successful implementation of the mobile payment

system relies on collaboration among businesses,

merchants, and consumers, along with establishing a

robust regulatory framework and widely accepted

standards. By leveraging the transformative potential

of machine learning, this system has the capacity to

revolutionize financial practices and drive economic

development in India.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 29-34

34

REFERENCES

[1] J. Muthee and N. Mhando, "African Media

Development Initiative Tanzania," 2006

[2] Wikipedia (2008) Short Message Service.

Available:

http://en.wikipedia.org/wiki/SMS#cite_note-1

[3]

https://www.statista.com/statistics/557951/mobile-

commerce-transaction-value worldwide/

[4] GSMA. (2019). State of the industry report on

mobile money. Retrieved from

https://www.gsma.com/mobilefordevelopment
/wp-content/uploads/2019/04/State-of-the-
Industry-Report-on-Mobile-Money_2019.pdf

[5] Ling, R., & Donner, J. (2009). Mobile

communication. Polity Press.

[6] Arroyo, E., & Mendoza, L. (2014). Mobile money:

Overview and analysis of technology adoption and

usage patterns. The Journal of Technology Studies,

40(1), 35-46.

[7] Singh, R., & Sachdeva, P. (2019). Mobile payment

systems: A review of technologies and business

models. International Journal of Advanced Research

in Computer Science and Software Engineering, 9(7),

166-174.

[8] The News Minute. (n.d.). No ATM for 25km:

Villages in Madhya Pradesh struggle with

demonetisation. Retrieved from

https://www.thenewsminute.com/article/no-
atm-25km-villages-madhya-pradesh-struggle-
demonetisation-52903

[9] Choudhury, D., & Barua, S. (2020). Design and

Implementation of Mobile Payment System Using

Machine Learning. International Journal of

Engineering and Advanced Technology (IJEAT), 9(5),

2799-2804.

[10] Donner, J. (2008). Research approaches to mobile

use in the developing world: A review of the literature.

The Information Society, 24(3), 140-159.

[12] Li, L., & Yu, Z. (2018). Mobile payment

authentication based on machine learning and user

behavior analysis. IEEE Access, 6, 47379-47386.

[13] Gupta, A., & Dalal, U. (2020). A study on factors

influencing mobile payment adoption and user

behavior. International Journal of Business Innovation

and Research, 21(2), 255-273.

[14] Choudhury, D., & Barua, S. (2020). Design and

implementation of mobile payment system using

machine learning techniques. International Journal of

Innovative Technology and Exploring Engineering,

9(5), 2799-2804.

[15]

http://www.cab.org.in/FILCPortal/Lists/Implementati

ons/Attachments/10/

operational_manual_financial.pdf

http://en.wikipedia.org/wiki/SMS#cite_note-1
https://www.statista.com/statistics/557951/mobile-commerce-transaction-value-worldwide/
https://www.statista.com/statistics/557951/mobile-commerce-transaction-value-worldwide/
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/04/State-of-the-Industry-Report-on-Mobile-Money_2019.pdf
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/04/State-of-the-Industry-Report-on-Mobile-Money_2019.pdf
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/04/State-of-the-Industry-Report-on-Mobile-Money_2019.pdf
https://www.thenewsminute.com/article/no-atm-25km-villages-madhya-pradesh-struggle-demonetisation-52903
https://www.thenewsminute.com/article/no-atm-25km-villages-madhya-pradesh-struggle-demonetisation-52903
https://www.thenewsminute.com/article/no-atm-25km-villages-madhya-pradesh-struggle-demonetisation-52903
http://www.cab.org.in/FILCPortal/Lists/Implementations/Attachments/10/%20%20%20%20%20operational_manual_financial.pdf
http://www.cab.org.in/FILCPortal/Lists/Implementations/Attachments/10/%20%20%20%20%20operational_manual_financial.pdf
http://www.cab.org.in/FILCPortal/Lists/Implementations/Attachments/10/%20%20%20%20%20operational_manual_financial.pdf

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

35

API Malware Analysis: Exploring Detection and Forensics Strategies For

Secure Software Development

Husam Alalloush1*, Wasim A. Ali1

husamalalloush@gmail.com, wasim.ali@poliba.it

1Chaitanya University, India, 2Politecnico di Bari, Italy

Abstract

 API Malware Analysis and Forensics is a key field of research in cybersecurity. It is critical to have strong

defenses in place to detect and prevent malware attacks. APIs, since they can have disastrous consequences. The

article aims to provide a thorough overview of the current state of the art in API malware analysis and forensics, as

well as the methods and equipment used to discover, analyses, and combat API-based malware assaults. Also covered

will be an overview of the various approaches for identifying malware in APIs, such as static and dynamic analysis.

The primary purpose of this work is to offer a comprehensive overview of API malware analysis and investigation,

spanning numerous approaches and instruments used to detect and investigate API malware. This study also

emphasizes the importance of taking proactive steps to prevent API-based malware attacks, such as testing APIs for

vulnerabilities regularly, implementing security protocols, and deploying cutting-edge security technologies to detect

and mitigate API-based malware attacks.

1. INTRODUCTION

An application programming interface (API) is a

collection of protocols, procedures, and tools that

allows software developers to communicate and

collaborate. APIs provide a standard method for

exchanging data and services across multiple software

components, irrespective of the underlying hardware

and operating systems [1].

APIs play a crucial role in creating modular and

scalable applications in software development. Using

APIs, developers can deconstruct complex systems

into smaller, independent components that can be

independently developed, evaluated, and deployed.

APIs also enable developers to utilise existing code

and services, which saves time and reduces

development costs [2]. APIs can be utilised in

numerous software applications, including web

applications, mobile apps, and desktop software.

Typically, they connect disparate software systems,

such as a front-end web application, to a back-end

database [3].

However, APIs can also represent a potential security

risk. Malicious actors can exploit API design and

implementation vulnerabilities to initiate API malware

mailto:husamalalloush@gmail.com
mailto:wasim.ali@poliba.it

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

36

attacks. Therefore, developers and security

professionals must implement appropriate security

measures and undertake regular API security testing to

ensure the integrity of their systems [4].

2. API MALWARE ATTACKS: A REAL

DANGER

API security has distinct characteristics that

differentiate it from traditional security. Firstly, APIs

introduce a challenge because they employ various

protocols and multiple endpoints, unlike traditional

networks that mainly focus on protecting specific ports

like HTTP (port 80) and HTTPS (port 443). As APIs

evolve, even a single API can become a complex

security task [3].

Secondly, APIs in a DevOps context often undergo

frequent changes, making it difficult for traditional

security tools, such as Web Application Firewalls

(WAFs), to handle their elasticity. These tools require

manual tuning and reconfiguration whenever an API

changes, which is prone to errors and consumes

valuable resources and time [3].

Thirdly, clients accessing APIs are not limited to web

browsers. Native and mobile applications and other

services and software components often interact with

service or microservice APIs. Traditional web security

technologies relying on browser verification cannot

effectively identify harmful bots in automated traffic

originating from API endpoints, as these clients do not

utilize browsers [3]. It's important to note that

examining incoming requests alone does not guarantee

the detection of attacks since many API abuse attacks

can mimic legitimate requests.

3. THREAT OF API MALWARE ATTACKS

API

API malware attacks pose a significant threat in the

realm of cybersecurity. These attacks utilize APIs to

inject and execute malicious code on a targeted

system. The malware is often concealed within API

calls, exploiting vulnerabilities to gain unauthorized

access or control over the system. API malware attacks

can manifest in various ways, including remote code

execution, credential theft, data exfiltration, and DDoS

attacks [22][10][12].

Remote code execution involves injecting malware

through an API call, enabling attackers to execute code

on the targeted system remotely. Credential theft

occurs when malware is employed to pilfer user

credentials through API calls, such as usernames and

passwords. Data exfiltration involves extracting

sensitive data from the targeted system using API

calls. Additionally, through APIs, malware can initiate

Distributed Denial of Service (DDoS) attacks,

inundating the targeted system with excessive traffic

and disrupting normal operations.

To mitigate the risk of API malware attacks,

developers and security professionals must implement

robust security measures and regularly conduct API

security testing.

4. API MALWARE ANALYSIS AND

FORENSICS: A CRUCIAL FIELD OF STUDY

API malware analysis and forensics play a critical role

in detecting, analyzing, and mitigating the impact of

API malware attacks. These attacks can lead to severe

consequences for organizations, including data

breaches, system downtime, financial losses, and

damage to their reputation [10][22]. Conducting

effective API malware analysis and forensics is crucial

in identifying the source and extent of the attack,

recovering lost or stolen data, and implementing

measures to prevent future attacks.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

37

API malware analysis involves examining APIs and

their associated code to identify indicators of malware,

such as unusual API calls or unexpected system

behavior. Detecting malware can be challenging since

it may be disguised or obfuscated to evade detection.

On the other hand, API malware forensics involves

conducting a thorough investigation of the attack to

determine its root cause and develop preventive

measures against similar attacks in the future. This

process may include analyzing system logs, studying

network traffic, and examining other digital evidence

to reconstruct the attack and assess the extent of the

damage [22].

The significance of API malware analysis and

forensics has grown in parallel with the increasing use

of APIs in software development. As more

organizations rely on APIs to connect their systems

and services, the potential attack surface for API

malware attacks has also expanded [22][10]. In

conclusion, organizations must prioritize API malware

analysis and forensics to safeguard against the

detrimental effects of API malware attacks. By

investing in these practices, organizations can uphold

the integrity and security of their APIs and proactively

prevent future attacks [22].

5. TYPES OF API MALWARE ATTACKS

Organizations should be aware of various common

types of API malware attacks that pose a risk to their

systems [8][9][12]. These attacks include:

API Spoofing: Attackers create fake APIs that imitate

legitimate ones. When users connect to these fake

APIs, attackers can steal user credentials or inject

malware into the user's system.

API Injection: Malicious code is inserted into valid

API calls to execute it on the targeted system. This can

be achieved by exploiting API input flaws or

intercepting and modifying API calls using man-in-

the-middle attacks.

API Parameter Tampering: Attackers modify

parameters in API calls to gain unauthorized access or

manipulate data. This can be done by intercepting and

modifying API calls or using automated tools to

manipulate API inputs.

API Denial-of-Service (DoS) Attacks: APIs are

overwhelmed with excessive requests, causing them to

crash or become unresponsive. This can be achieved

by flooding the API with requests using automated

tools or exploiting vulnerabilities in the API's design

or implementation.

API Phishing: Users are deceived into connecting to

fake APIs that appear legitimate. When users enter

their credentials into these fake APIs, attackers steal

them for future use.

API Remote Code Execution (RCE): API RCE

attacks leverage weaknesses in APIs to execute

arbitrary code on the targeted machine. This can be

accomplished by using a malicious payload in an API

call or exploiting vulnerabilities in the API's input

validation or authentication mechanisms.

The number of APIs deployed within organizations is

rapidly increasing, with a survey showing that 26% of

businesses now use at least twice as many APIs

compared to the previous year. This surge in API

usage has made APIs a prime target for attacks [9]. It

is crucial for organizations to be aware of these types

of API malware attacks and implement appropriate

security measures to protect their systems and data

from potential vulnerabilities and unauthorized access.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

38

6. EXPLANATION OF HOW API MALWARE

CAN BE USED TO EXECUTE MALICIOUS

CODE

API malware can exploit vulnerabilities in

software components that utilize APIs to execute

malicious code [13][14]. Attackers hide malware

within API calls, enabling them to inject and

execute malicious code on a targeted system. One

common method is remote code execution (RCE),

where attackers send a payload containing

malicious code through an API. This payload is

executed on the system, granting the attacker

remote access and control [13][14]. Another

technique is API injection, where attackers inject

malicious code into legitimate API calls, taking

advantage of API input flaws or intercepting and

modifying API calls through man-in-the-middle

attacks [22]. API malware can also execute

malicious code through credential theft, data

exfiltration, and DDoS attacks. For instance,

API malware can steal user credentials through

API calls and subsequently utilize those

credentials to execute malicious code on the

targeted system [15][10].

To protect against API malware attacks that

execute malicious code, organizations should

implement secure API design, authentication and

authorization mechanisms and monitor API

activity for suspicious behaviour. Regular API

security testing and analysis can also help detect

and prevent API malware attacks [10][22].

Examples of real-world API malware

attacks:

Facebook API Malware Attack: In 2018,

attackers exploited an API vulnerability on

Facebook to steal access tokens and compromise

more than 30 million user accounts. The attack

leveraged the "View As" feature to access and

control user accounts [4].

Twitter API Malware Attack: In 2013, a

malware attack on Twitter's APIs resulted in the

theft of user data, including passwords and email

addresses. Attackers exploited a cross-site

scripting (XSS) flaw in Twitter's mobile app [5].

Uber API Malware Attack: In 2016, attackers

targeted Uber's APIs, compromising the personal

data of over 57 million users and drivers. The

attack exploited an API vulnerability to gain

unauthorized access to a database, which was then

downloaded and encrypted [6].

Salesforce API Malware Attack: In 2018, a

malware attack on Salesforce's APIs led to the

theft of customer data from multiple Salesforce

customers. Attackers exploited an API

vulnerability to access customer data, using it for

phishing attacks and other fraudulent activities.

Equifax API Malware Attack: In 2017, a

malware attack on Equifax's APIs exposed

personal data belonging to over 143 million

customers. Attackers exploited an API

vulnerability to access customer data, which was

downloaded and exfiltrated [7].

These real-world examples highlight the

damaging consequences of API malware attacks

and emphasize the importance of robust API

security measures to safeguard sensitive data and

prevent unauthorized access.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

39

7. TECHNIQUES FOR API MALWARE

DETECTION

API malware can be detected using various

methods, including signature-based detection,

behaviour-based detection, and machine learning-

based detection [2][1].

Signature-based detection: This method

involves searching for patterns or signatures of

known malware within API requests. Signatures,

which are derived from well-known malware, are

used to identify related malware in API calls.

While effective against known malware,

signature-based detection may fail to detect new

or undiscovered threats.

Behaviour-based detection: This approach

focuses on analyzing the behaviour of API calls to

detect potential malware. Behaviour-based

detection involves creating a baseline by profiling

normal API call behaviour and then identifying

any deviations from the baseline. This method can

detect new and unknown malware, but it may also

produce false positives.

Machine learning-based detection: In this

method, machine learning techniques identify

abnormal patterns in API calls. Machine learning

algorithms are trained on typical API call

behaviour to detect deviations from the norm.

This approach can detect brand-new and

unidentified malware but may also result in false

positives and negatives.

The advantages and disadvantages of signature-

based and machine learning-based, techniques are

summarized in Table 1.

Table 1. signature-based and machine learning-based

advantages and disadvantages.

Feature Signature-based Machine Learning-

based

Advantage

Reduced runtime, Easy

to implement

More effective in finding

polymorphic malware,

Can detect unknown

malware

Disadvantage

Unknown malware

cannot be detected,

Requires regular

updates

Requires a significant

amount of labeled

training data, Can be

computationally

expensive

Accuracy High, Low

High, Can be high or low

depending on the model

False positives Low, High

Low, Can be high

depending on the model

False negatives High, Low

High, Can be low

depending on the model

8. TECHNIQUES OF API MALWARE

ANALYSIS.

1- Static Analysis: Static analysis involves examining

the code within API calls without executing it. This

technique typically relies on automated tools to scan

the code for known malicious patterns, vulnerabilities,

or code obfuscation techniques. It analyzes the code's

structure, syntax, and content to identify potential

security issues. Static analysis tools may use pattern

matching, rule-based analysis, or abstract

interpretation to detect known malware signatures or

suspicious code constructs. However, static analysis

may struggle with detecting sophisticated or

previously unseen malware as it relies on pre-existing

knowledge of known patterns.

2- Dynamic Analysis: Dynamic analysis involves

executing API calls in a controlled environment to

observe their behavior and interactions. It captures

runtime information and monitors network traffic,

system calls, memory usage, and other runtime

characteristics. By analyzing the behavior of API calls

during execution, dynamic analysis can identify

abnormal or malicious activities, such as unauthorized

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

40

data access, privilege escalation, or suspicious

network communications. Dynamic analysis can

provide insights into runtime code execution, data

flow, and interactions with the underlying system. It

effectively detects behavior-based attacks and

identifying unknown or zero-day threats that may

evade static analysis. However, dynamic analysis can

be resource-intensive and time-consuming, especially

when dealing with large-scale or complex systems.

3- Sandboxing: Sandboxing involves running API

calls in an isolated and controlled environment known

as a sandbox. The sandbox provides a virtualized or

containerized environment that emulates the necessary

system resources and dependencies to execute API

calls safely. By isolating the execution of API calls,

sandboxes prevent potential damage to the underlying

system. Sandboxing allows analysts to observe the

behavior of API calls in a controlled environment,

monitoring system interactions, file system

modifications, network communications, and other

runtime activities. It helps identify potentially

malicious behaviors or activities that might harm the

host system. However, advanced malware may be

designed to evade sandbox detection by detecting the

presence of a sandbox environment or by employing

techniques to delay malicious activities.

4- Memory Forensics: Memory forensics involves

analyzing a system's volatile memory (RAM) to gather

evidence and extract information related to security

incidents or malicious activities. In analyzing API

calls, memory forensics can provide valuable insights

into runtime behavior, data structures, and potential

code injections or modifications performed by

malware. By examining the memory space used by an

application or API, analysts can uncover artefacts,

such as injected code, hooks, or altered data, that may

indicate the presence of malicious code. Memory

forensics can also help identify malware persistence

mechanisms or uncover encryption keys and

passwords used by the malicious code. Including

memory forensics in API call analysis can enhance the

depth of investigation and aid in detecting advanced or

memory-based attacks.

5- API Fuzzing: API fuzzing is a technique used to

test the robustness and security of APIs by sending a

large volume of malformed or unexpected inputs to an

API and monitoring its response. The goal is to

identify vulnerabilities or weaknesses in the API

implementation that attackers could exploit. By

fuzzing API inputs, analysts can uncover security

flaws, such as buffer overflows, injection

vulnerabilities, or error-handling issues that might lead

to unauthorized code execution or other forms of API

abuse. While API fuzzing is primarily used for testing

and security assessment, it can indirectly aid in

identifying potential malicious code injection points or

vulnerabilities within API calls. Incorporating API

fuzzing as part of the analysis can help identify

weaknesses and harden the security of APIs.

Combining these techniques is often employed for

comprehensive API call analysis and identifying

malicious code. Static analysis is useful for quickly

identifying known patterns and vulnerabilities, while

dynamic analysis provides a deeper understanding of

runtime behavior. Sandboxing offers a controlled

environment for executing and observing API calls.

These techniques are often complemented with other

security measures, such as threat intelligence, anomaly

detection, and continuous monitoring, to enhance the

overall effectiveness of API call analysis and mitigate

the risk of malicious code execution.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

41

9. 4.API FORENSICS

API forensics is the process of investigating and

examining APIs to determine if they have been

exploited, misused, or compromised. It involves

applying forensic techniques and technologies to

uncover security flaws, gather evidence for legal

purposes, and collect relevant data from both the APIs

themselves and the systems connected to them. API

forensics plays a crucial role in today's interconnected

world, where systems and platforms heavily rely on

APIs for seamless integration [16][20].

The significance of API forensics stems from the

increasing reliance on APIs to enable communication

and data exchange between various systems, services,

and applications. APIs serve as the interface for these

interactions, making them an attractive target for

attackers seeking to exploit vulnerabilities or gain

unauthorized access. By conducting API forensics,

investigators can thoroughly analyze the APIs and

associated systems to identify any signs of

compromise, abuse, or security breaches.

API forensics involves several key activities and

techniques. These may include:

Data Collection: Gathering relevant information and

data from the APIs and the systems they connect to.

This includes obtaining API logs, network traffic data,

server logs, and any other available artifacts that may

hold evidence of malicious activity or security

incidents.

Traffic Analysis: Analyzing the network traffic

generated by the API calls, including request and

response data. This analysis can help identify

anomalous patterns, suspicious activities, or

unauthorized access attempts.

Code Review: Reviewing the API code, including the

endpoints, authentication mechanisms, input

validation, and error handling. This examination aims

to identify any vulnerabilities, insecure coding

practices, or potential attack vectors that could be

leveraged by malicious actors.

API Access and Usage Analysis: Examining access

controls, authentication mechanisms, and usage

patterns of the APIs. This analysis helps identify any

unauthorized access, abnormal usage patterns, or

misuse of the APIs.

Incident Reconstruction: Reconstructing the sequence

of events leading up to a security incident or

compromise involving the APIs. This involves

analyzing various artifacts, such as logs, timestamps,

and system states, to understand the timeline and the

methods used by attackers.

Digital Evidence Preservation: Ensuring the proper

preservation and integrity of digital evidence collected

during the API forensic investigation. This is crucial

for maintaining the admissibility and reliability of the

evidence in potential legal proceedings.

API forensics is valuable not only for detecting and

mitigating security incidents but also for supporting

legal actions. The evidence collected during API

forensic investigations can be used in court cases or

internal disciplinary actions to hold perpetrators

accountable, establish liability, or prove compliance

violations.

As the reliance on APIs continues to grow, the

importance of API forensics becomes even more

significant. By applying forensic techniques and

leveraging appropriate technologies, organizations

can ensure the integrity, security, and trustworthiness

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

42

of their API ecosystems and respond effectively to

potential security incidents.

10. API FORENSICS PROCESS

The API forensics process consists of several essential

steps, each contributing to the comprehensive analysis

of APIs and the identification of security breaches and

attacks. Here is an expansion of each step:

Identification: The first step involves identifying the

APIs utilized within the organization's systems and

platforms. This includes understanding the types of

APIs being used, their specific functionalities, and the

systems they are connected to. It is crucial to have a

clear overview of the API landscape to focus the

forensic investigation effectively.

Collection: Once the APIs have been identified, the

next step is to collect relevant data from these APIs.

This includes gathering API logs, network traffic data,

server logs, and any other available information that

can aid in identifying security breaches and attacks.

The collection process should aim to capture a

comprehensive dataset that covers the period of

interest.

Analysis: The collected data is then subjected to

analysis using forensic techniques and specialized

tools. This involves examining traffic patterns,

analyzing request and response data, identifying

anomalies or abnormal behaviors, and tracing

potential attack vectors. The analysis helps in

understanding the scope and impact of security

breaches, as well as determining the root cause of any

malicious activities.

Evidence Gathering: In API forensics, the focus is on

gathering evidence that can be utilized in legal

proceedings or internal disciplinary actions. This step

involves preserving the collected data in a secure

manner to maintain its integrity and admissibility as

evidence. Proper documentation, including

timestamps, metadata, and chain of custody, should be

established to create an audit trail of the investigation.

The findings and conclusions of the API forensics

analysis should also be documented as part of the

evidence-gathering process.

It's important to note that the API forensics process

may vary depending on the specific requirements,

available resources, and the nature of the investigation.

It may involve additional steps, such as incident

reconstruction or collaboration with legal

professionals. Furthermore, throughout the process,

adherence to best practices and legal requirements,

including data protection and privacy regulations, is

crucial.

By following a systematic API forensics process,

organizations can effectively identify and respond to

security breaches, collect valuable evidence for legal

purposes, and improve the overall security posture of

their API ecosystems.

11. CHALLENGES OF API FORENSICS

API forensics encounters various challenges that

impede its effectiveness. One primary obstacle is the

complexity inherent in modern API architectures,

which often involve multiple levels and components.

This complexity poses difficulties in identifying and

isolating security flaws and attacks. Furthermore, the

forensic investigation process is further complicated

by the reliance on third-party services as the

foundation for APIs, adding intricacy to the analysis

[19][21].

Another challenge is the absence of standardized

forensic methods and tools tailored for API forensics.

While certain tools are available, they are often

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

43

proprietary and not widely adopted. This lack of

standardized tools hinders collaboration and data

sharing among researchers, making it challenging to

collaborate and effectively leverage collective

expertise in API forensics [19][21].

In summary, the challenges of API forensics include

the complexity of contemporary API architectures

with multiple levels and components, as well as the

dependence on third-party services. Additionally, the

absence of standardized forensic methods and tools

further complicates the forensic investigation process,

hindering collaboration and data sharing among

researchers. These challenges highlight the need for

continued research and development to address these

complexities and enhance the effectiveness of API

forensics.

12. TECHNIQUES FOR API FORENSICS

API forensics encompasses retrieving, preserving, and

analysing evidence about attacks targeting APIs. The

following techniques are commonly employed in API

forensics [16][18][19][20][21]:

Memory Dump Analysis: This technique involves

extracting the memory from a machine to identify any

malicious activity. Memory dump analysis is useful

for locating malware that may not exist in the file

system but resides solely in memory. Specialized tools

and methods, such as the Volatility Framework, can be

utilized to analyze memory dumps effectively.

Log Analysis: Log analysis examines system logs for

suspicious activities associated with API-based

attacks. System logs can provide crucial details about

the behaviour of API calls, including timestamps,

source and destination addresses, and the nature of the

operations performed. Both automated tools like Log

Parser and manual analytic methods can be employed

for log analysis.

Network Traffic Analysis: Network traffic analysis

involves monitoring the traffic between systems to

detect any unusual activity related to API-based

attacks. This technique enables the identification of

the origin and destination of API calls and the type of

data being transferred. Specialized tools like

Wireshark are commonly used for network traffic

analysis.

System Profiling: System profiling entails gathering

information about the system's configuration to

identify potential vulnerabilities or weaknesses.

System profiling aims to pinpoint elements susceptible

to API-based attacks by scrutinising software and

hardware configurations. Automated tools such as

OSSEC or manual analysis techniques can be

employed for system profiling.

Evidence Collection: Evidence collection

encompasses properly gathering and preserving

evidence associated with API-based attacks. This

includes collecting system logs, memory dumps, and

network traffic data. Ensuring the meticulous

collection of evidence is essential to ensure its

admissibility in court and its ability to support

potential legal actions if required.

In API forensics, employing these techniques

facilitates the systematic retrieval, analysis, and

preservation of evidence, investigating API-based

attacks and supporting potential legal proceedings.

13. API FORENSICS TOOLS

There are various tools available for conducting API

forensics. Here is an expanded version of the provided

information:

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

44

Volatility Framework: The Volatility Framework is

an open-source memory forensics tool widely used for

API forensics. It enables detecting of malicious

behaviour associated with API-based attacks by

analyzing system memory dumps. With Volatility,

investigators can examine the memory artefacts to

identify signs of compromise or the presence of

malware targeting APIs.

Wireshark: Wireshark is a popular network traffic

analysis tool used for monitoring and analyzing

network traffic in API-based attacks. It captures and

decodes network traffic in real-time, allowing analysts

to study the data transferred during API calls.

Wireshark facilitates identifying any suspicious or

malicious activities, enabling detailed analysis of

network communication related to APIs.

Log Parser: Log Parser is a versatile log analysis tool

for parsing and analyzing system logs relevant to API-

based attacks. It extracts pertinent information from

log files, aiding in understanding API call behaviour

and identifying any anomalies or malicious activities.

Log Parser is valuable in extracting insights from

system logs and facilitating investigation.

OSSEC: OSSEC is a host-based intrusion detection

system commonly used for system profiling and the

detection and prevention of API-based attacks. It

monitors various aspects, such as system logs, file

changes, and network traffic, to identify suspicious

activity. OSSEC generates alerts to notify

administrators when potential API-related threats or

anomalies are detected, contributing to enhanced

security and incident response.

Fiddler: Fiddler is a web debugging proxy tool widely

employed for analyzing and debugging HTTP traffic

associated with API-based attacks. It captures and

analyzes HTTP traffic between clients and servers,

allowing investigators to identify and investigate

malicious activities within the API calls. Fiddler

provides insights into the communication between

clients and APIs, aiding in identifying potential

security issues or vulnerabilities.

These tools serve as valuable assets for conducting

effective API forensics, providing memory analysis,

network traffic monitoring, log analysis, system

profiling, and HTTP traffic inspection capabilities.

Leveraging these tools can significantly enhance the

investigation process and aid in identifying and

responding to API-based security incidents.

14. DISCUSSION AND FUTURE STUDY

API malware analysis and forensics research can

explore several potential directions to enhance

detection and response capabilities. These areas of

study include:

Advancement of Machine Learning-Based

Techniques: Further development of machine

learning-based techniques can lead to more accurate

detection and classification of API-based attacks. By

training models on large datasets of known attack

patterns, researchers can enhance the ability to identify

and categorize malicious API activities with high

precision.

Real-Time Detection and Response Systems: There

is a need for automated systems that can detect API-

based attacks in real-time and respond promptly and

effectively. Developing intelligent algorithms and

frameworks capable of monitoring API traffic and

identifying suspicious behaviours in real-time can

significantly improve incident response and mitigate

the impact of attacks.

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

45

Analyzing Encrypted Traffic: As encryption

becomes more prevalent, developing techniques to

analyze encrypted traffic is crucial for detecting and

mitigating API-based attacks. Exploring methods for

identifying suspicious activities within encrypted API

communications can help uncover malicious

intentions and potential security breaches.

Addressing API Security in Emerging

Technologies: The emergence of technologies like

cloud computing and the Internet of Things (IoT)

presents new challenges for API security. Future

research should focus on developing robust security

solutions tailored to these technologies, ensuring that

APIs used in cloud-based systems and IoT

applications are adequately protected.

In terms of implications for software development and

cybersecurity best practices, prioritizing API security

is paramount. Developers should receive training in

secure coding practices and adhere to established

security guidelines. Regular security assessments and

testing should be conducted to identify and address

vulnerabilities in API-based applications, helping to

strengthen the overall security posture.

The industry can proactively address emerging threats

and protect systems and data from API-based attacks

by pursuing these future research directions and

emphasising API security in software development.

15. CONCLUSION

The paper provides a comprehensive examination of

API malware analysis and forensics. It covers various

aspects, including the role of APIs in software

development, the risks associated with API malware

attacks, and the significance of API malware analysis

and forensics. Additionally, it delves into common

types of API malware attacks, techniques for detecting

and analyzing API malware, methods for analyzing

API calls to identify malicious code, and tools utilized

in API forensics.

The study underscores the criticality of API security

and emphasizes the importance of conducting regular

security assessments and testing to identify

vulnerabilities in API-based applications. It stresses

the need for developers to adhere to established

security guidelines, receive training in secure coding

practices, and establish incident response plans to

address API-based attacks effectively.

The paper further advocates for future research in

several key areas. It suggests the development of

automated systems capable of real-time detection of

API-based attacks, techniques for analyzing encrypted

traffic associated with APIs, and security solutions

tailored to emerging technologies like cloud

computing and the Internet of Things (IoT).

Furthermore, it highlights the potential of machine

learning-based techniques in API malware analysis

and forensics. The research should also focus on

evaluating the effectiveness of different API malware

detection and analysis techniques and establishing best

practices for API security. Overall, the paper

emphasizes the significance of API malware analysis

and forensics, provides insights into effective security

measures, and outlines future research directions to

enhance API security and combat emerging threats.

REFERENCES

[1] Kim, D., Kim, T. H., & Yeom, K. (2020). A Survey

on Machine Learning-Based Malware Detection

Using API Call Sequences. Journal of Information

Processing Systems, 16(6), 1422-1435.

[2] Rajesh, R., & Karthick, S. (2020). Malware

detection using API call sequence analysis with deep

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

46

learning techniques. Cluster Computing, 23(2), 1103-

1116.

[3] Chowdhury, S. R., Samanta, S., & Roy, D. (2020).

Malware detection using API call sequences: A

comparative study. In 2020 International Conference

on Artificial Intelligence in Information and

Communication (ICAIIC) (pp. 104-109). IEEE.

[4] Dhiman, G., & Juneja, D. (2019). Malware

detection using API calls and machine learning.

International Journal of Network Security, 21(1), 68-

75.

[5] Khalid, H., Rasool, R., & Mehmood, Z. (2018).

Malware detection using API call sequence and Deep

Learning.

In 2018 15th International Bhurban Conference on

Applied Sciences and Technology (IBCAST) (pp. 21-

26). IEEE.

[6] Youn, C. H., Seo, S. H., & Kim, S. J. (2018). Deep

learning-based malware detection using API call

sequences. In 2018 20th Asia-Pacific Network

Operations and Management Symposium (APNOMS)

(pp. 1-4). IEEE.

[7] Santos, I., Rocha, G., & de Carvalho, A. (2014). A

dynamic feature approach to malware detection using

API calls. In International Symposium on Research in

Attacks, Intrusions, and Defenses (pp. 119-139).

Springer.

[8] Wang, Y., Li, H., & Yu, C. (2017). Malware

detection using API call sequences. Journal of

Ambient Intelligence and Humanized Computing,

8(6), 1117-1124.

[9] Kim, J., Kang, B. J., & Kim, H. (2016). A study on

API-based malware detection using machine learning

techniques. Journal of Information Processing

Systems, 12(1), 66-80.

[10] Seo, S. H., Kim, D. J., & Kim, S. J. (2016). A

malware detection method using API call sequence

and reinforcement learning. In International

Symposium on Ubiquitous Networking (pp. 343-348).

Springer.

[11] Qiao, Y., Yang, Y., He, J., Tang, C., & Liu, Z.

(2014). CbmCBM: free, automatic malware analysis

framework using API call sequences. In Knowledge

Engineering and Management.

[12] Chandola, V., Banerjee, A., & Kumar, V. (2009).

Anomaly detection: A survey. ACM Computing

Surveys (CSUR), 41(3), 1-58.

[13] Acosta, J. C., Mendoza, H., & Medina, B. G.

(2012). An efficient common substrings algorithm for

on-the-fly behavior-based malware detection and

analysis. In Proceedings - IEEE Military

Communications Conference MILCOM.

[14] Ki, Y., Kim, E., & Kim, H. K. (2015). A Novel

Approach to Detect Malware Based on API Call

Sequence Analysis. International Journal of

Distributed Sensor Networks.

[15] Sundarkumar, G. G., & Ravi, V. (2013,

December). Malware detection by text and data

mining. In 2013 IEEE International Conference on

Computational Intelligence and Computing Research.

[16] Yu, H., Sun, X., Chen, S., Tang, F., & Chen, Z.

(2018). Deep learning-based API-call sequence

embedding model for malware detection. Future

Generation Computer Systems, 86, 431-440.

[17] Chen, T., Shu, J., Huang, T., Wang, Y., & Xu, G.

(2020). Malware detection using API call sequences

with recurrent neural networks. IEEE Access, 8,

146029-146039.

[18] Abbas, H., Dsouza, M., Alazab, M., &

Venkatraman, S. (2018). Malware detection using

deep learning techniques based on API call sequences.

In Proceedings of the 2018 IEEE/ACM International

Conference on Advances in Social Networks Analysis

and Mining (pp. 1282-1289). IEEE.

[19] Tang, S., Cao, Y., Huang, H., & Wang, X. (2019).

A malware detection method based on API call

sequences and machine learning. Security and

Communication Networks, 2019.

[20] Wang, Q., Liu, Z., & Xie, T. (2020). Malware

detection using API call sequence and CNN-based

Journal of Intelligent Systems and Applied Data Science (JISADS), ISSN (2974-9840) Online. Vol.1, Issue.1, (2023), PP. 35-47

47

feature extraction. Journal of Ambient Intelligence and

Humanized Computing, 11(8), 3353-3363.

[21] Liu, Z., Wang, Q., Xie, T., & Li, Y. (2020).

Malware detection using LSTM-based API call

sequence feature extraction. IEEE Access, 8, 160157-

160167.

[22] Liao, Y., Liu, X., & Zhang, Y. (2021). Malware

detection using ensemble learning with deep neural

networks based on API call sequences. IEEE Access,

9, 72091-72100.

