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ABSTRACT 

This systematic review analyses the ethical and emotional challenges associated with Human-Digital Twin Interaction 

(HDTI), an emerging area that integrates real-time data modelling and human-centred artificial intelligence. The review 

synthesizes findings from 39 peer-reviewed studies in healthcare, education, and industrial sectors, highlighting key 

issues such as data privacy, algorithmic bias, emotional authenticity, and user autonomy. A thematic analysis 

demonstrates these challenges at the intersection of technical design and human experience, impacting user trust, 

emotional well-being, and ethical compliance. The review presents a multidimensional framework that connects 

essential design elements namely personalization, empathy modelling, and explainability with their ethical implications, 

emotional effects, and practical implementation strategies. This study emphasizes the significance of emotional 

calibration, participatory design, and ethical auditing as essential mechanisms for ensuring the responsible deployment 

of HDTI. The review examines not only individual user concerns but also system-level and societal implications, such 

as institutional trust, social equity, and the cultural formation of emotional norms. The findings highlight the necessity 

for interdisciplinary collaboration and policy innovation to ensure that HDTI systems are consistent with the principles 

of transparency, fairness, and emotional integrity. This study seeks to direct subsequent research and influence the 

development of ethically and emotionally sustainable digital twin technologies. 
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1 . INTRODUCTION 

 

1.1. Overview 

HDTI represents a significant advancement in 

human-AI collaboration, characterized by the integration 

of detailed and dynamically adaptive digital 

representations of individuals within socio-technical 

systems. Digital counterparts designed to replicate 

cognition, emotion, and behaviour are being increasingly 

utilized in healthcare, industrial, and educational sectors 

to improve decision-making, personalize services, and 

support emotional well-being [1], [2]. This advancement 

raises ethical concerns and emotional complexities that 

necessitate immediate scholarly and design focus [1], [2].  

Recent studies highlight that HDT systems 

consistently gather and analyse sensitive biometric, 

behavioural, and emotional data, resulting in risks 

associated with privacy violations, discriminatory 

profiling, and algorithmic bias [1], [3], [4]. As Figure 1 

illustrates, these challenges manifest differently across 

domains, with healthcare facing autonomy risks, industry 

grappling with overreliance, and education confronting 

cultural insensitivity.  

 

In healthcare, the risk of undermining patient 

autonomy occurs when AI-driven Human-Digital 

Twins(HDTs) serve as substitutes for diagnostic or 

therapeutic decisions [4]. In industrial applications, 

concerns regarding dependency on automation and the 

decline of human initiative have emerged, highlighting 

mailto:wmalnuwaiser@imamu.edu.sa


2                       17-(2025) PP. 1, 1, Issue.3Vol. ),cience (JISADSSata Dpplied AJournal of Intelligent Systems and  

 

Publisher: JISADS.com 

 

issues related to overreliance on AI systems and the 

reduction of creative agency [2], [5]. 

Emotional design issues have concurrently gained 

significant attention. Although HDTs are progressively 

integrated with affective computing features, their 

emotional responses frequently exhibit a deficiency in 

nuance, cultural sensitivity, or authenticity. Studies 

indicate that users can develop attachments to HDTs 

through simulated empathy, leading to superficial or 

misleading emotional experiences [6], [7], [8].  

This poses risks of psychological harm, emotional 

miscommunication, and unclear relational boundaries, 

especially among vulnerable groups such as patients, 

children, and the elderly [6], [9], [10]. 

The study investigates the ethical and emotional 

problems related to HDTI systems, as well as how 

human-centred design concepts might be applied to these 

concerns across other domains. Given the convergence of 

AI, cognitive science, and ethics, a multidisciplinary 

approach is required to ensure that HDTI systems are 

transparent, fair, and emotionally intelligent. 

 
Figure 1: Key Domains and Ethical-Emotional Challenges in HDTI 

 

1.2 AI and Human-Digital Twin Interaction 

The transition of HDT systems from passive models 

to interactive, emotionally responsive agents (Emotional 

authenticity refers to an HDT's capacity to imitate human-

like emotional reactions that consumers believe are real 

[6]) necessitates a focus on emotionally aware and 

ethically grounded design. Researchers have investigated 

frameworks for the implementation of trust-building 

mechanisms, privacy-preserving architecture, explainable 

AI (XAI), and transparent decision pathways [11], [12]. 

Affective computing, real-time biometric sensors, and AI-

driven behavioural prediction models are examples of 

technological breakthroughs that enable more adaptable 

interactions.  

Emerging solutions suggest hybrid approaches, such 

as integrating ethicists in design teams to audit emotional 

algorithms or adaptive interfaces that adjust transparency 

levels based on user emotional cues. These innovations 

highlight the need to balance technical precision with 

psychological safety in HDTI systems. For example, real-

time emotion detection via biometric sensors runs the risk 

of oversimplifying complex human states (e.g., attributing 

increased heart rate solely to stress). Similarly, XAI 

frameworks frequently prioritise technical explainability 

over emotional intelligibility, leaving users perplexed by 

"explained" decisions that lack empathetic framing. 

1.3 Problem Statement 

Research reveals a disconnect between theoretical 

ethical concepts and their practical validity in dynamic 

environments such as healthcare and industry. Addressing 

these gaps is essential for ensuring that HDTI systems do 

not jeopardise user autonomy or emotional well-being. 

Despite the existence of normative frameworks for ethical 

Human-Digital Twin Interaction (HDTI) ([2],[4],[10]), 

their application does not adequately confront three 

significant real-world challenges. In healthcare, AI-driven 

HDTs may prioritise algorithmic "optimisation" over 

patient preferences, thereby compromising informed 

consent ([4],[9]). Emotion recognition systems developed 

on limited datasets often misinterpret cultural and 

neurodiverse expressions, thereby exacerbating 

inequalities ([6],[7],[12]). Existing guidelines are unable 

to adapt to changing contexts (e.g., a patient's declining 

mental health), thereby increasing the risk of harm 

([2],[10]).  
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In the absence of intervention, these deficiencies are 

likely to reproduce historical failures of AI characterized 

by exploitative data practices and emotional manipulation 

especially among vulnerable populations ([6],[7],[18]). 

Furthermore, the lack of standardised frameworks for 

balancing emotional authenticity and user agency is a 

considerable difficulty. 

1.4 Research Question 

This systematic review examines the subsequent 

research question: 

1. What ethical and emotional design challenges 

arise in HDTI, and how can human-centred 

design principles be applied to address these 

challenges across various application domains, 

including healthcare, industry, and education? 

2. How can cultural variations in emotional 

expression and ethical expectations inform the 

development of more adaptable 

HDTI frameworks? 

2 . Methodology 

This systematic review follows the Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines [13],[14]. The 

methodology was designed to capture interdisciplinary 

perspectives on ethical and emotional dimensions in 

HDTI systems across healthcare, industrial, and 

educational domains.  

The chosen studies comprise a strategic combination 

of theoretical, qualitative, empirical, and mixed-methods 

contributions, enabling the review to utilize both 

conceptual frameworks and user-centred evidence. The 

inclusion criteria mandated that each study explicitly 

addressed ethical considerations, emotional modelling, or 

both, thereby aligning with the review's objective to 

investigate emotionally intelligent and ethically 

responsible HDTI systems. This integrative approach 

facilitates a thorough analysis of contemporary design 

strategies, system implementations, and governance 

challenges within the field. The review process comprises 

six fundamental stages: (1) Data Sources, (2) Research 

Strategy, (3) Study Selection Criteria, and (4) Data 

Extraction Process.  

2.1 Data Sources 

This review is based on the formulation of the 

research question: What are the ethical and emotional 

design challenges in HDTI, and how can these be 

addressed through human-centred design principles 

across various application domains, including healthcare, 

industry, and education? A systematic search strategy was 

developed and implemented in the Semantic Scholar 

database, which contains over 126 million academic 

papers, to thoroughly investigate this question. Additional 

sources included IEEE Xplore (for technical 

implementation studies), PubMed (for healthcare-specific 

applications), and Scopus (for interdisciplinary 

perspectives). 

2.2 Research Strategy  

        A competent research strategy is essential for refined 

outcomes following the research questions developed. 

The research strategy involves the identification and 

implementation of successful keywords to complete the 

initial database accumulation of relevant articles.  

       A total of 499 papers were initially identified, from 

which 86 studies were selected based on keyword 

relevance screening. The identified keywords were 

“human digital twin,” “ethical design,” “affective 
computing,” “emotional AI,” “human-AI interaction,” 
“healthcare digital twin,” and “empathy in AI” The 

filtering prioritized studies that specifically examine 

ethical implications or emotional design within HDTI 

contexts. 

2.3 Study Selection Criteria 

Strict inclusion/exclusion criteria were used in the 

study selection process to ensure methodological 

coherence. Table 1 below highlights eligibility based on 

diverse constitutional and study characteristics. 

A total of 39 papers fulfilled the criteria. This figure 

indicates a balance between thematic saturation and the 

depth of analysis that is manageable, aligning with the size 

of reviews in related fields such as ethical robotics and 

affective AI [6], [7]. 

2.4 Process of Data Extraction 

The data extraction phase of this systematic review 

adhered to a rigorous and methodologically transparent 

protocol designed to capture the ethical and emotional 

dimensions of HDTI. This process was developed to 

address gaps in current HDTI literature, particularly 

where ethical and affective considerations are frequently 

neglected, thereby emphasizing the intricate human-

centred issues specific to this emerging field. The flow 

diagram below (Figure 2) indicates the overall mechanism 

of the final literature selection.  

 

 

 

Table 1: Eligibility criteria for this study selection. 
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Criteria Inclusion Exclusion 

Study Focus 
Addresses HDTI as interactive agents rathe

r than mere simulations 
Mechanical or object twins without HDTI 

Design Considerations Explores ethical or emotional dimensions Focuses on purely technical implementations 

Methodology 
Employs qualitative, quantitative, or 

mixed-methods research 
Consists of opinion pieces and editorials 

Domain 
Pertains to healthcare, industry, or 

education applications 

Involves non-human-centred fields (e.g., 

robotics) 

Language English only. Any other language. 

Time Frame 2018-2024 Pre-2018 studies 

A total of 86 records were initially screened, 

resulting in a final selection of 39 studies for detailed 

analysis. This analysis employed a hybrid methodology 

that integrated AI-assisted semantic categorization with 

manual thematic validation. A qualitative extraction 

schema was custom-built, incorporating interdisciplinary 

concepts from affective computing, human-AI ethics, and 

responsible design. 

A well-structured and relatively systematic review 

was completed. Scrutiny and the final selection were 

pertinent to the eligibility considerations set. The 

illustration (Figure 3) below describes the process of 

initial research to the final selection stage in the form of a 

flowchart theme following PRISMA guidelines. Thirty-

nine research items were used in the outcomes analysis 

and quality appraisal at the end.

 

Figure 2: Summary of the data extraction process (Source: Illustrated by author).

 
Figure 3: PRISMA flow chart (Source: Illustrated by author). 

A final dataset of 39 studies was selected for full-text 

review and thematic analysis, based on methodological 

rigour and content relevance, from the refined pool. The 

studies encompass various domains.  

The extraction framework included six essential 

dimensions, detailed below:  

• Study Design and Methodology: Each study 

was categorized according to its primary 
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methodological framework, encompassing 

qualitative interviews, conceptual frameworks, 

empirical surveys, experimental designs, or 

mixed methods. The classifications established a 

basis for comprehending the depth and breadth 

of ethical and emotional inquiry in various 

studies. Qualitative interview studies, such as 

those conducted by [9], highlighted the 

perspectives of healthcare practitioners. In 

contrast, experimental research by [30] 

examined user responses to HDT-based 

rehabilitation tools.  

• Application Context: The specific domains in 

which each HDTI system was developed or 

studied were documented, encompassing 

healthcare, education, industrial, and design 

environments. The classifications facilitated the 

identification of domain-specific emotional 

demands and ethical complexities. Healthcare 

has become the most prominent field owing to its 

emotionally sensitive and ethically complex 

characteristics.  

• Ethical Focus Areas: Research was categorized 

based on explicit discussions regarding data 

privacy, algorithmic fairness, informed consent, 

transparency, autonomy, and surveillance. [4] 

explored the ethical implications of surrogate 

representation of patients, whereas [10] analysed 

the potential impact of digital twins on human 

self-understanding and identity, situating these 

discussions within a wider philosophical 

examination of ethics, representation, and 

personhood in healthcare settings.  

• Emotional Integration Strategies: This 

category outlines the methods by which systems 

model, express, or react to emotional signals, 

including affective feedback loops, adaptive 

responses, and empathy modelling. [8] 

developed affect-sensitive interfaces to assess 

emotional responses, whereas [12] introduced 

emotionally coherent AI expressions in 

customer-facing systems.  

• Stakeholder Involvement: The analysis 

recorded the extent and manner of involvement 

of user or stakeholder groups (e.g., patients, 

designers, caregivers) in co-design processes, 

pilot testing, or qualitative validation. 

Participatory studies emphasized the emotional 

significance and ethical validity contributed by 

stakeholder input, which was frequently absent 

in theoretical literature. 

• Design and Governance: actionable 

recommendations were documented, including 

ethical audit protocols, consent management 

dashboards, and mechanisms for setting 

boundaries in emotional interactions. The 

proposals were essential for converting 

theoretical frameworks into practical safeguards, 

with research by [2] providing models for 

participatory governance.  

Inter-rater reliability checks were conducted to 

ensure consistency, with discrepancies resolved through 

collaborative consensus. Inter-rater reliability 

assessments were conducted, and discrepancies were 

addressed through collaborative consensus. This review 

exclusively incorporates studies that directly address 

ethical and emotional constructs within the context of 

HDTI, thereby differentiating it from more general digital 

twin analyses.   

This comprehensive extraction process facilitated a high-

resolution synthesis of existing knowledge in HDTI, 

establishing this review as a key resource for the ethical 

and emotionally sensitive advancement of future digital 

twin systems. The extraction process promoted a 

structured analysis of the emotional and ethical aspects of 

HDTI by systematically extracting and categorizing 

relevant elements. The screening phase prioritized the 

selection of studies based on inclusion criteria, while data 

extraction allowed for comparative analysis and thematic 

synthesis, showing broad patterns and practical effects 

across multiple research disciplines. 

3 . Characteristics of Included Studies 

This section provides an overview of the 39 studies 

included in this systematic review. The studies illustrate a 

diverse and interdisciplinary landscape, highlighting the 

various domains in which HDTI technologies are being 

investigated. The analysis indicates a predominant focus 

on theoretical and conceptual exploration, accompanied 

by a limited number of empirical and applied studies. The 

distribution of research types and application contexts 

highlights the nascent character of the field and the 

essential requirement for increased applied, real-world 

studies. 

 Table 2 presents the characteristics of the included 

studies, including their methodological design, 

application domain, and focus on ethical or emotional 

dimensions. This table offers an overview of the research 

landscape examined in this review and acts as a reference 

for the subsequent thematic synthesis. 

3.1 Study Types 

Classifying studies based on their methodological 

approaches is essential for a comprehensive 
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understanding of the research landscape of HDTI. This 

categorization offers insight into the evolution of the field 

and the types of evidence that support discussions on 

emotional and ethical considerations. Study types reflect 

the diversity of research perspectives, from conceptual 

debates to empirical validation, and influence the depth of 

insights regarding user experiences, technological 

affordances, and ethical risks. The 39 selected studies are 

distributed by methodological type as follows: 

• Theoretical and Conceptual Studies (30 

studies): These studies offered frameworks, 

ethical critiques, conceptual models, and 

analyses of speculative design. Some authors, 

such as [1] and [4], provided philosophical and 

normative analyses of digital twin ethics, 

whereas others, like [2], concentrated on societal 

risks and emerging disruptions.  

• Qualitative Studies (5 studies): These 

investigations utilized interviews, user studies, 

and interpretive methodologies to analyse 

perceptions of HDT systems. For instance, [9] 

analysed the perceptions of medical 

professionals regarding the incorporation of 

digital twins into clinical practice.  

• Empirical/Experimental Studies (4 studies): A 

limited yet noteworthy collection of studies 

employed experimental methodologies to assess 

emotional expressiveness, system 

responsiveness, or user trust within HDT 

environments. Significant contributions are 

found in [6] and [8], which assessed affective 

interactions and emotional modelling.  

• One study employed a mixed-methods 

approach, integrating quantitative and 

qualitative data to evaluate user responses to 

emotionally adaptive HDTs within controlled 

simulations. 

3.2 Application Domains 

The 39 studies examined encompass various 

application domains, highlighting the increasing 

significance of HDTI in multiple contexts. The domains 

were classified into four primary categories: healthcare, 

manufacturing/industry, education, and other emerging 

fields, according to their focus and implementation 

context. 

• Healthcare (26 studies): This domain 

constitutes the predominant portion of the 

analysed studies. This research focuses on the 

application of HDTs in personalized care, 

medical diagnostics, mental health support, and 

the development of emotionally adaptive virtual 

agents. Significant ethical issues encompass 

patient privacy, informed consent, and the 

genuineness of emotional engagement. 

Emotional dimensions were particularly 

significant in therapeutic contexts, where the 

modelling of empathy and the provision of 

emotional support were central components. 

Studies by [7] and [3] illustrate that HDTs can 

replicate emotional care, while simultaneously 

highlighting issues related to dependency and the 

erosion of trust.  

• Manufacturing and Industry (7 studies): 

These studies examined the role of HDTs in 

manufacturing and industry, specifically 

addressing operator augmentation, productivity 

optimization, and predictive maintenance. 

Ethical concerns in this context encompass 

automation bias, job displacement, and worker 

surveillance, despite being typically less 

emotionally intensive. Research, including [5] 

and [2], examined the impact of HDTs on 

autonomy and decision-making within smart 

manufacturing systems.  

• Education (5 studies): They examined the 

potential of HDTs to improve learning outcomes 

via personalized tutoring, emotional feedback, 

and cognitive engagement. Emotional 

responsiveness is a critical factor in enhancing 

student motivation and retention. Ethical 

considerations encompass data sensitivity, 

equity in learning analytics, and the potential for 

emotional manipulation. Examples include AI-

driven tutors who can modify their tone and 

content according to the learner's mood or 

engagement levels.  

• Other Emerging Fields (2 studies): A limited 

number of studies investigated innovative HDTI 

applications in areas including urban 

governance, smart mobility, and public policy. 

The studies primarily concentrated on 

speculative implementations and conceptual 

modelling, highlighting issues related to 

emotional disconnection and social 

accountability. Although these areas exhibit 

lower maturity, they indicate potential avenues 

for the expansion of HDTI beyond conventional 

sectors.  
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Table 2: Characteristics of studies 

Study Study Type 

Application 

Domain 

 

Human 

Digital Twin 

(HDT) 

Technology 

Type 

Primary 

Focus 

Alimam et al., 

2023 [15] 

Theoretical/conceptual 

Analysis 

Industry 5.0, 

Industrial 

Metaverse 

Digital triplet 

architecture 

Integration of 

Artificial 

Intelligence 

(AI) with 

digital 

transformation 

Arkin et al., 

2014 [16] 

Theoretical/conceptual 

Analysis 
Healthcare 

Robot 

co-mediators 

Preserving 

dignity in 

patient caregiver 

relationships 

Bomström et 

al., 2022 [17] 

Qualitative 

Study 
Manufacturing 

Human Digital 

Twins 

Design 

objectives for 

HDTs in 

complex 

systems 

Braun, 

2021[18]   

Theoretical/conceptual 

analysis 
Healthcare 

Digital twins in 

medicine 

Ethical 

implications of 

digital twins 

Braun, 2021 

[10] 

Theoretical/conceptual 

analysis 
Healthcare 

Digital twins in 

medicine 

Ethical 

challenges of 

digital twins 

Bruynseels et 

al., 2018[1] 

Theoretical/conceptual 

analysis 
Healthcare 

Digital twins in 

personalized 

medicine 

Ethical 

implications of 

digital twins 

Campanile et 

al., 2023 [8] 
Mixed methods Healthcare 

Emotional aware 

Human- 

Machine 

Interfaces 

(HMIs) 

Inferring 

emotional 

models from 

human machine 

interactions 

Cardin and 

Trentesaux, 

2022 [5] 

Theoretical/conceptual 

analysis 
Industrial/ Manufacturing 

Human operator digital 

twins 

Ethical 

implications of 

HDTs in 

industrial 

systems 

De Oliveira et 

al., 2023 [19] 

Empirical 

study 

(experimental) 

Healthcare, 

Industry 

Data-driven 

emotion 

modelling for 

HDTs 

Feasibility of 

emotion 

modelling for 

HDTs 

El Warraqi et 

al., 2024[20] 

Theoretical/conceptual 

analysis 
Manufacturing 

Digital Twin 

modelling 

Human-centricity 

in 

manufacturing 

Fontes et al., 

2024 [2] 

Theoretical/conceptual 

Analysis 

Healthcare, Industry/ 

Manufacturing, 

Education, 

Urban Planning/ 

Governance, 

X-commerce, 

Military 

Human Digital 

Twins 

Ethical 

implications 

and disruptions 

of HDTs 

Gabrielli et 

al., 

Theoretical/conceptual 

analysis 
Healthcare 

Digital twins in 

digital 

Design of 

AI-powered 



8                       17-(2025) PP. 1, 1, Issue.3Vol. ),cience (JISADSSata Dpplied AJournal of Intelligent Systems and  

 

Publisher: JISADS.com 

 

2023 [21] therapeutics mental health 

interventions 

Garner et al., 

2016 [22] 

Qualitative 

study 
Healthcare Virtual carers 

Ethical 

responsibilities 

in virtual care 

for the elderly 

Hu et al., 2022 

[23] 

Theoretical/conceptual 

analysis 
Transportation 

Driver Digital 

Twin 

Design and 

enabling 

technologies for 

DDTs 

Huang et al., 

2022 [3] 

Theoretical/conceptual 

analysis 
Healthcare 

Digital twins 

for 

personalized 

healthcare 

Mapping ethical issues 

of DTs in 

healthcare 

Jabin et al., 

2024 [24] 

Theoretical/conceptual 

analysis 

(scoping 

review) 

Healthcare 
Digital health 

twins 

Ethical and 

quality of care 

challenges in 

older care 

settings 

Kabalska and 

Wagner, 2024  

[25] 

Theoretical/conceptual 

analysis 

Healthcare, 

Education, 

Office work 

Human digital 

Twins 

Emergence and 

impacts of 

HDTs 

Langayan, 

2024 [11] 

Theoretical/conceptual 

analysis 

Education, 

Healthcare, 

Entertainment, 

Customer 

service 

Digital entities 

Establishing 

genuine human 

connections 

through digital 

entities 

Langås et al., 

2023 [26] 

Theoretical/conceptual 

analysis 

Manufacturing/Industry 

5.0 

Digital twins 

for 

human-robot 

teaming 

Ethical and 

philosophical 

implications of 

DTs in HRT 

Lauer-

Schmaltz 

et al., ”Beat 
me if I can!” 

[27] 

Empirical 

study 

(experimental) 

Healthcare 

HDT-based 

opponents in 

rehabilitation 

gaming 

Use of HDTs as 

active elements 

in serious 

games 

Lauer-

Schmaltz 

et al., 2022 

[28] 

Theoretical/conceptual 

analysis 

(Systematic 

literature 

review) 

Healthcare 
Human Digital 

Twins 

Designing 

HDTs for 

Behavior changing 

therapy and 

rehabilitation 

Lauer-

Schmaltz 

et al., 2024a 

[29]  

Theoretical/conceptual 

analysis 

 

Healthcare, 

Workplace 

optimization 

Human Digital 

Twins 

Systematic 

methodology 

for designing 

HDTs 

Lauer-

Schmaltz 

et al., 2024b 

[30] 

Empirical 

study 

(experimental) 

Healthcare 
HDTs in 

rehabilitation 

Design and 

implementation 

of HDT system 

for stroke 

rehabilitation 

Lee et al., 

2022 [7] 

Qualitative 

study (focus 

groups with 

thematic 

analysis) 

Social and 

emotional 

interaction 

with AI 

Conversational 

AI 

Emotional 

bonds between 

humans and 

conversational 

AI 

Loveys et al., 

2022[12] 

Theoretical/conceptual 

analysis 

Healthcare, 

Customer 
Digital humans 

Exploring 

empathy with 
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(Scoping 

review) 

service, 

Education 

digital humans 

Mandischer et 

al., 2024 [31] 

Theoretical/conceptual 

analysis 

Industrial, 

Healthcare, 

Urban 

Planning 

Human Digital 

Twins 

Novel 

paradigm for 

modelling 

humans in 

human-to-anything 

interaction 

Meghdari and 

Alemi, 2018 

[32] 

Theoretical/conceptual 

analysis 

Healthcare, 

Education, 

Entertainment/ 

Gaming 

Social & 

Cognitive 

Robotics 

Ethical 

challenges in 

social & 

cognitive 

robotics 

Mittelstadt, 

2021[4]  

Theoretical/conceptual 

analysis 
Healthcare 

Digital twins in 

Medicine 

Near-term 

ethical 

challenges of 

digital twins 

Montag and 

Diefenbach, 

2018 [33] 

Theoretical/conceptual 

analysis 

Digital 

societies and 

Internet of 

Things 

Digital 

technologies 

Psychological 

and emotional 

impacts of 

digital societies 

Nguyen et al., 

2024 [34] 

Empirical 

study 

(experimental) 

Emergency 

response and 

safety-critical 

operations 

Human Digital 

Twins in 

human-AI 

teams 

Trust 

development in 

human-AI 

teams using 

HDTs 

Palmer et al., 

2023 [35] 

Theoretical/conceptual 

analysis 

Manufacturing 

and Production 

Digital Twin 

Interface 

Symbiotic 

interface for 

Digital Twin 

Popa et al., 

2021 [36] 

Qualitative 

study 

(interview-based) 

Healthcare 
Digital twins in 

Healthcare 

Socio-ethical 

benefits and 

risks of digital 

twins in 

healthcare 

Song, 2023 

[37] 

Theoretical/conceptual 

analysis 
Design 

Human digital 

Twins 

 

Development 

and impact of 

HDTs on 

design 

Vildjiounaite 

et 

al., 2023 [38] 

Theoretical/conceptual 

analysis 

Healthcare 

(Occupational 

health and 

mental 

wellbeing) 

Human Digital 

Twin 

Challenges of 

learning HDT 

for mental 

wellbeing 

Wang et al., 

”Human 
Digital 

Twin in 

Industry 5.0” 
[39] 

Theoretical/conceptual 

analysis 

Manufacturing/Industry 

5.0 

 

Human Digital 

Twin 

HDT in the 

context of 

Industry 5.0 

Wendrich and 

Kruiper, 

”Keep 

IT Real”[40] 

Theoretical/conceptual 

analysis 

Design and 

Human- 

Computer 

Interaction 

HDT(E) design 

Tool 

Real-time 

interaction and 

affective 

computing in 

design tools 

Xames and 

Topcu, 2023 

[41] 

Theoretical/conceptual 

analysis 

Healthcare, 

Transportation 

Digital Twins 

for Human-in-the- 

loop 

Workload 

management 

and burnout 
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These application domains demonstrate the 

customization of HDTI systems to address the ethical and 

emotional requirements of various environments. The 

significance of healthcare studies underscores the 

necessity of incorporating emotional intelligence into 

critical interactions, while new fields emphasize the 

importance of proactive ethical design across various 

societal sectors. 

3.3 Characteristics of Technology and 

Interaction 

The HDTI systems analysed in the studies exhibited 

considerable variation in complexity and modes of 

interaction. Some utilized biometric sensors and real-time 

data streams to replicate human behaviour, while others 

employed virtual agents and avatars integrated with 

affective computing algorithms. Emotional interactivity 

varied from fundamental sentiment detection to 

sophisticated empathy modelling and expressive feedback 

mechanisms [12], [11].  

Numerous studies have examined trust dynamics, 

transparency mechanisms, and the relational boundaries 

between users and HDTs. For example, references [10] 

and [6] emphasized the psychological risks associated 

with emotionally manipulative or excessively 

anthropomorphic human-robot interactions. 

These 39 studies collectively offer a comprehensive 

and nuanced perspective on the HDTI research landscape. 

Their reflection encompasses the conceptual maturity of 

ethical and emotional design issues, alongside the urgent 

requirement for empirical grounding, interdisciplinary 

collaboration, and context-sensitive design 

methodologies. The results of this analysis provide a basis 

for the thematic synthesis and design framework 

discussed in the subsequent sections.  

4 . Thematic Analysis 

This section provides a thematic synthesis from the 

39 studies reviewed, presenting an integrated perspective 

on the primary ethical and emotional challenges, along 

with the associated design implications for HDTI systems. 

The analysis identified three primary thematic clusters: (1) 

Ethical Challenges, and (2) Emotional Design Issues. 

Each theme encompasses interconnected subthemes that 

represent persistent issues, conceptual conflicts, and 

actionable priorities in HDTI research (refer to Figure 4). 

 

 
Figure 4: Thematic structure of ethical and emotional challenges in HDTI 

Systems prevention in 

healthcare 

systems 

Zalake, 2023 

[9] 

Qualitative 

study 
Healthcare 

Digital Twins 

of doctors 

Doctors' 

perceptions of 

using their 

digital twins in 

patient care 

de Melo et al., 

2023 [6] 

Theoretical/conceptual 

analysis 

General 

human-machine 

interaction 

Virtual humans 

and social 

robots 

Social 

functions of 

machine 

emotional 

expressions 
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4.1 Ethical Challenges 

Ethical considerations are fundamental to HDTI, 

particularly given the sensitivity of the data involved and 

the potential impact of HDTs on users. In the analysed 

literature, five primary ethical subthemes were identified.  

• Privacy and Data Governance: numerous 

studies highlight the risks linked to the extensive 

collection of biometric, behavioural, and 

emotional data within the realms of privacy and 

data governance. Scholars including [1] and [3] 

emphasize the necessity of robust frameworks 

for informed consent, data minimization, and 

access transparency in HDT systems.  

• Autonomy and Human Agency: the increasing 

dependence on predictive human decision 

technologies in decision-making processes, 

particularly in healthcare and industry, may 

reduce user autonomy. References [4] and [5] 

emphasize the ethical considerations associated 

with the delegation of control to digital replicas.  

• Bias and fairness are significant ethical 

concerns, particularly regarding biased data, 

algorithmic discrimination, and non-inclusive 

design. Scholars, such as [2], contend that 

without critical evaluation, digital twins could 

reinforce existing structural inequalities.  

• Trust and Explainability: research highlight 

the significance of fostering user trust via 

systems that provide clear explanations. 

References [11] and [12] highlights that 

transparency in algorithmic processes and 

emotional responses may reduce user scepticism.  

• Accountability and Regulation: regulatory 

oversight and ethical governance are 

increasingly emphasized in discussions of 

accountability. [4] and [10] support the need for 

multidisciplinary collaboration to create policy 

frameworks that are consistent with ethical 

HDTI development.  

To complement these qualitative themes, Figure 5 

quantifies how frequently specific ethical concerns were 

associated with the ten key HDTI design aspects reviewed 

in the literature. The graph reveals that privacy risks and 

bias risks were the most consistently mentioned, each 

appearing to 2 out of 10 design aspects, reinforcing their 

prominence across various HDTI applications. 

Meanwhile, other important concerns such as autonomy 

loss, trust challenges, deception risk, boundary blurring, 

empathy challenges, transparency issues, and societal 

impact each appeared in 1 out of 10 design aspects. This 

distribution illustrates a fragmented but growing 

awareness of ethical complexity in HDTI systems. While 

some issues such as privacy and bias have received 

sustained scholarly attention, others though equally 

significant remain underexplored. The graph emphasizes 

the need for a more integrated and balanced ethical design 

strategy that ensures these considerations are not treated 

as isolated risks, but as interdependent elements within a 

holistic framework of responsible HDTI development. 

 

 
Figure 5: Ethical design frequency 

4.2 Emotional Design Issues 

The emotional dimensions in HDTI systems present 

distinct design challenges, particularly as these systems 

strive to recognize, model, and respond to human effects. 

Five emotional subthemes were identified from the 

analysis.  

• Emotional Authenticity versus Simulation 

presents a persistent challenge, as artificial 

empathy is often perceived as manipulative or 

superficial. Cultural norms strongly impact these 

impressions. Collectivist cultures (e.g., Japan) 

may allow less expressive HDTs, whereas 

individualist cultures (e.g., the United States) 

demand overt emotional participation [12]. 

Exaggerated expressions might be 

uncomfortable for neurodiverse users (for 

example, those on the autistic spectrum), 

necessitating adaptive calibration [7]. Emotional 

calibration is the dynamic modification of an 

HDT's emotional output based on real-time user 

feedback [8] According to sources [6] and [7], 

users may encounter difficulties in establishing 

meaningful connections with HDTs that are 

devoid of emotional depth or sincerity. [6] 

examined the advantages and ethical 

implications of emotional expressions by virtual 

humans and social robots. [12] underscored the 

necessity for AI to transcend basic emotion 



12                       17-(2025) PP. 1, 1, Issue.3Vol. ),cience (JISADSSata Dpplied AJournal of Intelligent Systems and  

 

Publisher: JISADS.com 

 

recognition to attain authentic empathy. [7] 

observed the potential for superficial human 

relationships resulting from interactions with AI. 

Figure 6 illustrates the distribution of emotional 

implications across ten design aspects identified 

in the HDTI literature. Among these, negative 

emotional impacts were the most frequently 

reported, associated with 4 out of the 10 design 

aspects, indicating significant concerns around 

user distress, emotional overload, or discomfort. 

Mixed emotional impacts, such as simultaneous 

benefits and risks, and complex emotional 

impacts, involving nuanced or context-

dependent user responses, were each discussed in 

relation to 2 design aspects. Notably, positive 

emotional impacts highlighting beneficial 

emotional outcomes like trust, engagement, or 

comfort were identified in only 1 design aspect. 

Similarly, conditional emotional impacts, where 

user emotions depend on external factors like 

context or user profile, were also mentioned in 

just 1 aspect. This distribution underscores a 

cautious or critical tone in literature, 

emphasizing the importance of designing HDTI 

systems that account for a range of emotional 

outcomes and prioritize emotional safety and 

coherence. 

• Empathy Modelling: researchers investigate the 

role of affective computing in improving 

empathy simulation. Concerns persist regarding 

emotional overreach and psychological 

dependency. These problems are accentuated in 

cross-cultural settings. For example, HDTs 

educated on Western data may misinterpret East 

Asian users' quiet reactions as disengagement, 

creating prejudice [2]. To facilitate emotional 

communication in healthcare settings, [16] 

suggested employing artificial moral emotions in 

robot co-mediators. [12] highlighted how 

difficult it is to include genuine empathy in 

HDTs. A data-driven strategy for implementing 

empathy was put up by [8], which raised ethical 

questions about how to manage delicate 

emotional data. 

 

Figure 6: Emotional design frequency 

• Relational Boundaries and Dependency: 

several studies highlight the importance of 

maintaining relational boundaries and caution 

against emotional entanglement between users 

and HDTs, especially within vulnerable 

populations. [7] emphasized the capacity of AI to 

manipulate human emotions and the challenge of 

differentiating between altruistic and malicious 

intentions. [9] examined apprehensions about the 

possible diminishment of doctor-patient contact 

and the inadequacy of Digital Twins of Doctors 

for conveying critical information. [18] and [2] 

examined the notion that HDTs may alter human 

self-perception and identity. 

• Cultural and contextual sensitivity is essential, 

as emotional responses and norms differ among 

cultures. Emotional reactions differ by culture 

(e.g., high-context cultures prioritise tone over 

words [8]), domain (e.g., healthcare requires 

deeper authenticity than industry [4]), and 

individual characteristics (e.g., senior users 

choose clarity over speed [9]). [2] and [3] 

advocate for adaptive models that consider 

cultural variations in emotional expression and 

interpretation.  

• User trust and emotional coherence are 

essential for establishing reliability and 

consistency in emotional responses within 

HDTs. [12] Emphasize the necessity for 

emotionally coherent behaviours that align with 

user expectations.  

5 . Design and Implementation Framework 

This section presents an integrated design and 

implementation framework based on the thematic 

findings, reflecting the key principles identified in the 

selected literature. This framework, in contrast to purely 

hierarchical models, captures the multidimensional 
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relationships among design strategies, their ethical 

implications, and their emotional impacts within HDTI 

systems. This analysis derives from the synthesized 

matrix of findings and highlights the necessity for 

alignment among values, emotional intelligence, and 

responsible system behaviour. 

The framework is organized as a four-dimensional 

matrix, integrating insights from the existing literature. 

• Design Aspects are fundamental system 

components (e.g., personalization, empathy 

modelling, explainability)  

• Ethical Implications are related risks or 

protective measures (e.g., privacy violations, 

manipulation, disempowerment)  

• Emotional Impacts are effects on user 

experience, encompassing attachment, trust, 

fatigue, and comfort. 

• Implementation Guidelines are practical 

strategies for responsible deployments, such as 

consent dashboards, co-design sessions, and 

affective calibration.  

The literature presents various human-centred design 

recommendations to address the identified challenges.  

• Transparency and Explainability: 

incorporating explainable AI (XAI) features into 

HDT interfaces enhances user comprehension of 

system reasoning, which in turn fosters trust and 

aligns with ethical standards [11].  

• Participatory Design: it involves engaging end-

users and stakeholders in co-design processes to 

address ethical and emotional concerns from the 

outset, as suggested by several studies [2].  

• Emotional Calibration and Responsiveness: 

HDTs must be engineered to adapt emotional 

expressions dynamically, considering contextual 

factors, user preferences, and prior interactions 

[12], [8].  

• Safeguards against Overdependence: 

establishing usage limits, relational boundaries, 

and psychological safety measures is essential to 

prevent emotional overattachment, particularly 

in healthcare and educational contexts [9], [7].  

• Ethical Auditing and Oversight: regular 

auditing of HDT systems for ethical and 

emotional impact is essential. This encompasses 

bias testing, transparency assessments, and 

inclusive evaluation frameworks [4], [10]. 

This framework is not static. It is intended as a tool 

for designers, developers, and researchers to evaluate and 

adjust HDTI system behaviour at various lifecycle stages. 

It calls for ethical auditing, participatory co-design, and 

context-aware emotional calibration as part of 

implementation planning. 

The complete structure of this framework is detailed 

in the design and implementation matrix provided in 

Table 3. It organizes key design elements alongside their 

ethical implications, emotional impacts, and 

recommended implementation strategies.  

The detailed matrix provides actionable guidance on 

balancing innovation with responsibility and aims to 

ensure HDTI systems are not only technically robust but 

also socially and emotionally sustainable. 

 

Table 3: Design and implementation framework 

Design Aspect Ethical Implications Emotional Impact Implementation Guidelines 

Privacy and Data 

Protection 

Risk of privacy 

infringement, data 

misuse [1] 

Potential anxiety and 

distrust in users [7] 

Implement robust data 

governance, 

anonymization 

techniques, and user 

control over data [24] 

Autonomy and 

Control 

Potential loss of human 

agency, over-reliance on 

AI decisions [5] 

Feelings of 

disempowerment or loss 

of self-efficacy [7] 

Design for shared 

control, transparent 

decision-making 

processes, and user 

override options [18] 

Trust and Reliability 

Challenges in 

establishing and 

maintaining user trust [23] 

Emotional responses 

ranging from comfort to 

scepticism [7] 

Ensure system 

transparency, consistent 

performance, and clear 

communication of 

capabilities and 

limitations [28] 

Emotional 

Authenticity 

Risk of creating shallow 

or deceptive emotional 

Potential for both 

enhanced emotional 

Develop sophisticated 

emotion models, clearly 
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interactions [7] support and misplaced 

emotional attachment [7] 

communicate the 

artificial nature of HDT 

emotions [8] 

User-HDT 

Relationship 

Boundaries 

Blurring of 

human-machine 

relationships, potential 

for over-reliance [7] 

Complex emotional 

responses, potential for 

confusion or unrealistic 

[7] 

expectations 

Establish clear 

guidelines for HDT roles, 

educate users on the 

nature and limitations 

of HDT relationships [11] 

Empathy 

Implementation 

Challenges in creating 

genuine empathetic 

responses [16] 

Enhanced emotional 

support if successful, 

risk of perceived 

insincerity if not [12] 

Combine advanced AI 

techniques with insights 

from psychology and 

neuroscience [12] 

Personalization 

Privacy concerns, 

potential for bias in 

personalized interactions 

[23] 

Improved user 

engagement and 

emotional connection 

[27] 

Implement adaptive 

learning algorithms, 

allow user customization 

within ethical 

boundaries [2] 

Transparency and 

Explainability 

Difficulty in explaining 

complex AI 

decision-making 

processes [21] 

User frustration or 

mistrust if system 

actions are not 

understandable [28] 

Develop intuitively 

interfaces for explaining 

HDT actions, provide 

varying levels of detail 

based on user 

preferences [28] 

Cross-cultural 

Considerations 

Risk of cultural bias or 

Misunderstanding [3] 

Potential for cultural 

insensitivity or 

misinterpretation of 

emotional cues [7] 

Incorporate diverse 

cultural perspectives in 

design, allow for cultural 

customization [12] 

Long-term 

Psychological 

Effects 

Potential changes in 

human 

self-understanding and 

social dynamics [10] 

Complex long-term 

emotional impacts on 

users and society [7] 

Conduct longitudinal 

studies, implement 

ongoing monitoring and 

adjustment of HDT 

systems [33] 

 

6 . System-Level and Social Aspects 

Particularly in relation to issues of monitoring, 

overdiagnosis, automation, social identity, and regulatory 

uncertainty, the societal effects of HDTI systems are 

progressively recognized in the literature. These issues are 

profoundly ingrained in social, institutional, and ethical 

settings as well as technically based. These ideas are 

synthesized in the next part with references from current 

HDTI scholarship. 

6.1 Systemic Effects on Institutional 

Dynamics and Social Trust 

The mass acceptance of HDT systems runs the 

danger of permitting extensive surveillance, therefore 

compromising democratic principles and institutional 

confidence, as [2] suggests. While [5] stresses the delicate 

balance needed between automation and human creativity 

in industrial settings, [4] raises questions regarding 

overdiagnosis and the degradation of customized care in 

healthcare environments. These cases show how 

accidental HDT technologies while providing efficiency 

and accuracy, could lower transparency, depersonalize 

user involvement, and erode relational trust between 

people and institutions. 

6.2 Social Comparisons and Ethical Effects 

[25] underline ethical difficulties associated with 

social inequality by stressing the need for rigorous 

evaluation of HDTs' ethical impact in different 

socioeconomic settings. [7] investigated how HDT 

systems and artificial intelligence might influence 

generational shifts in relational expectations and value 

systems. [18] and [2] further highlight how HDTs might 

drastically change human self-understanding, therefore 

posing philosophical and ethical concerns concerning 

identity, authenticity, and digital embodiment. These 

writers underline together that the implementation of 

HDTI systems must be context-sensitive to prevent the 

reinforcement of prejudices and the neglect of weaker 

groups. 
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6.3 Social Guidelines and Emotional 

Conventions 

HDTs have complicated emotional and social effects 

weighted in culture. Emotionally sensitive HDTs could, as 

[7] propose, cause long-term changes in how society 

defines empathy, care, and interpersonal interactions. The 

spread of emotionally expressive artificial intelligence 

could help to normalize computer simulations of emotion, 

therefore blurring the distinction between real and 

synthetic effects. This standardization could minimize 

emotional variability and change society's view of 

emotional labour value. Designers must fight the 

homogeneity of emotional standards and instead support 

systems reflecting affective plurality. 

6.4 Policy, Regulation, And Multi-Stakeholder 

Engagement Government 

The research emphasizes how urgent laws must be 

developed to control HDT distribution. Particularly in 

healthcare, [3] underlines the need for organized ethical 

rules. While [36] supports thorough policy frameworks 

that manage the sociotechnical complexity of HDT use, 

[2] warns about gaps in regulation and the absence of 

accountable procedures. These sources agree that ethical 

government must be inclusive, initiative-taking, and in 

line with responsibility as well as innovation and 

responsibility. 

The development of HDTI has enormous potential 

but also raises major social and systematic issues. HDTI 

systems must be built and controlled with ethical foresight 

and a strong dedication to democratic, inclusive ideals if 

we are to prevent long-term damage and promote 

favourable results. Collective accountability is essential, 

as [2] underlines, to make sure that digital twins 

strengthen rather than undermine the social fabric in 

which they function. Aligning technology progress with 

society’s well-being depends on regulatory clarity, 

inclusive design, and continuous review. 

7 . Conclusion and Future Directions 

This review expands on fundamental issues in HDTI 

literature, particularly those highlighted by [4] regarding 

regulatory oversight and [6] concerning risks associated 

with emotional simulation. This systematic review 

analysed the ethical and emotional aspects of HDTI within 

healthcare, industrial, and educational sectors. The review 

conducted a thematic synthesis of thirty-nine studies, 

identifying significant challenges concerning data 

privacy, algorithmic bias, emotional authenticity, and user 

autonomy. The findings underscore the necessity for 

design frameworks that are both functionally effective and 

rooted in ethical considerations and emotional 

intelligence. 

HDTI systems possess significant potential to 

enhance decision-making, tailor services, and advance 

human-machine collaboration. As these systems gain 

autonomy and emotional expressiveness, they introduce 

novel vulnerabilities, especially in critical areas such as 

healthcare, eldercare, and mental health support. 

Emotional simulations devoid of transparency or 

contextual awareness can result in diminished trust and 

detrimental dependencies, whereas ethically ambiguous 

system behaviours pose a threat to individual well-being 

and public trust. 

 Future research must focus on creating evaluative 

frameworks that incorporate ethical auditing alongside 

affective performance metrics. Empirical studies are 

essential to investigate user interpretation and responses 

to the emotional cues of HDTs in various contexts and 

cultures. Interdisciplinary collaborations among AI 

researchers, ethicists, designers, and social scientists are 

crucial for ensuring that HDTI systems embody human 

values and social complexity. Prior research by [2] and [9] 

highlights the necessity for inclusive, context-sensitive 

strategies that are rooted in both domain-specific practices 

and overarching social norms.  

Significant challenges include translating abstract 

ethical principles into specific design specifications, 

addressing emotional variance without resorting to 

stereotypes, and guaranteeing equitable access to 

technologies that respond to emotional needs. Policies 

should adapt alongside technological advancements, 

ensuring a balance between openness to experimentation 

and the implementation of strong accountability 

measures. 

 The success of HDTI systems will rely on 

technological sophistication as well as their capacity to 

uphold human dignity, enhance well-being, and facilitate 

ethical interactions at both individual and societal levels. 

This review emphasizes the importance of prioritizing 

emotional intelligence and ethical foresight in the 

development of future digital twin systems.  
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ABSTRACT 

Blockchain is a new distributed computing paradigm characterized by security and trust, widely applied in various 
fields. However, security issues have become increasingly prominent, and the need for regulation is more urgent. 
The current state of the blockchain ecosystem and the regulatory policy backgrounds of major countries were 
briefly introduced. The relevant literature based on blockchain technology and application architecture were 
categorized and the characteristics of existing regulatory technologies and solutions were analyzed from three 
aspects: intra-chain regulation, inter-chain regulation, and off-chain regulation. Intra-chain regulation was further 
divided into three levels: infrastructure layer regulation, core function layer regulation, and user layer regulation. 
The advantages and disadvantages of different regulatory technologies at each level were discussed in detail. Inter-
chain regulation was divided into two categories: regulation based on the “governance by chain” concept and 
cross-chain security regulation, with a brief discussion of the characteristics of related studies. Then some 
representative cases of off-chain regulation were introduced. Finally, the common issues in current blockchain 
security regulation were analyzed with possible improvement directions and new areas in need of regulation. The 
gap was filled in reviews on blockchain regulation and a reference for the design of blockchain regulatory 
solutions was provided.  

 

Keywords: blockchain; blockchain security; blockchain regulation, Classification 

1. INTRODUCTION 

Since its inception, blockchain has evolved from 
Blockchain 1.0 to Blockchain 3.0, and its application 
scope has expanded from single payment scenarios to 
multiple industries, such as financial services, 
government and legal affairs, supply chain management, 
and identity verification [1]. Blockchain 1.0 focused on 
digital currencies, achieving decentralized value 
transfer. Blockchain 2.0 introduced smart contracts, 
marking the realization of complex business logic 
execution on-chain. Blockchain 3.0 emphasizes applying 
blockchain to real-world scenarios, realizing 
decentralized commercial networks [2]. 

In recent years, the rapid development of blockchain has 
led to increasingly rich blockchain applications. A batch 
of emerging blockchain projects represented by high-
performance public chains has emerged, such as Solana 
[3], Avax [4], Near, Hedera [5], Sui [6], etc. Traditional 
public chains (such as Bitcoin, Ethereum, Binance 
Chain, etc.) have also attracted a large influx of funds, 
incubating various Web3 projects, such as decentralized 
exchanges (DEX) [7], decentralized social and chat 
software [8], inscription and rune protocols, blockchain 
games [9], Web3 cloud services [10], etc. [11-16]. 

With the explosive growth of blockchain technology 
applications, its security issues have also become 
prominent. The risks caused by vulnerabilities in 
underlying blockchain platforms and blockchain 
applications, as well as various virtual asset crimes, pose 
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great challenges to blockchain security. According to 
SlowMist Hacked Statistical database, the number of 
major public security incidents in global blockchain has 
shown an increasing trend year by year since 2012, as 
shown in Figure 1. Blockchain-related security incidents 
mainly include 9 categories: wallet security incidents, 
malicious mining, distributed denial-of-service (DDoS) 
attacks, ransomware, digital currency fraud, digital 
currency money laundering, smart contract security, 
exchange security, and other attack incidents [17-18]. 

With frequent blockchain security incidents, the demand 
for strengthening blockchain regulation is becoming 
increasingly urgent. Since 2019, although the number of 
blockchain-related literature included in databases such 
as IEEE, ACM, and Springer has reached more than 
74,000, there are very few reviews directly studying 
blockchain regulation. Currently, domestic and foreign 
reviews related to blockchain regulation [19-22] tend to 
focus on the analysis of blockchain security or 
vulnerability detection and defense, or some related 
literature analyzes blockchain security in certain specific 
application scenarios [23-29], but does not involve 
blockchain regulation. 

 

Figure1. Puplic security incedents in Global Blockchain 

Based on the current development status of blockchain 
technology architecture, this paper divides it and the 
applications running on it into three layers: intra-chain 
infrastructure, cross-chain expansion, and decentralized 
autonomous communities and applications. The main 
contributions of this paper are as follows: 

1) The existing regulatory schemes are summarized 
into intra-chain regulation, inter-chain regulation, 
and off-chain regulation. Intra-chain regulation is 
further divided into three levels: infrastructure 
layer regulation, core function layer regulation, 
and user layer regulation, and the advantages and 
disadvantages of regulatory technologies at each 
level are meticulously classified according to the 
focus of relevant literature. 

2) Inter-chain regulation is further divided into 
regulation based on the 

“governance by chain” concept and cross-chain security 
regulation, analyzing and comparing the characteristics 
of related literature, and briefly discussing representative 
cases of off-chain regulation. 

3) Common issues in existing regulation are 
analyzed, and possible improvement directions are 
provided, pointing out that regulation should focus 
on emerging blockchain projects represented by 
Rollup and decentralized finance (DeFi) projects. 

1. Blockchain Regulation Background 

With the in-depth development of blockchain 
technology, its application scenarios have gradually 
enriched, and various complex applications have 
gradually formed the embryonic form of the blockchain 
ecosystem. These ecological projects have attracted a 
continuous influx of massive funds, and at the same time, 
they have also attracted the attention of governments and 
organizations around the world. This section briefly 
introduces the current state of the blockchain ecosystem 
and the representative blockchain regulatory policies of 
major countries. 

1.1 Current State of the Blockchain Ecosystem In 
academia, some literature has proposed the concept 
of blockchain ecosystem [24-30,145]. After 
summarizing relevant literature [31-33], the 
composition of the blockchain ecosystem is shown 
in Figure 2. The bottom layer of Figure 3 is the 
supporting development technology, and 
breakthroughs often promote the innovation of 
blockchain technology, usually computer basic 
disciplines or technologies such as cryptography, 
big data, distributed systems, cloud and fog 
computing, and decentralized learning. The top-
level application areas include real-world assets 
(RWA), electronic auctions, lending, decentralized 
finance, and many other scenarios. The blockchain 
ecosystem entities consist of eight parts: blockchain 
users, blockchain application providers, blockchain 
platform service providers, blockchain 
infrastructure, blockchain communities, blockchain 
equipment providers, blockchain regulatory 
agencies, and blockchain technology consulting 
providers [34-35]. These components are 
interconnected and interact through data and funds, 
forming an interdependent and mutually influential 
whole. 
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Figure 2. Blockchain ecosystem composition 

1.2 Blockchain Regulatory Policies Beyond academic 
research, blockchain has received varying degrees of 
attention from governments and organizations 
worldwide during its development. Some countries and 
organizations have already carried out systematic and 
standardized blockchain security regulation work [36-
37], and relevant regulatory policies and regulatory 
agencies are shown in Table 1. 

Table 1: Blockchain-related regulatory policies and 
regulatory agencies of some countries and organizations 

Canada Canadian Cryptocurrency 
Tax Guide 

Canada Revenue 
Agency (CRA) 

France 

Regulatory framework 
related to crypto assets 
and licensing 
requirements and 
regulations for digital 
asset service providers 

French Financial 
Supervisory 
Authority (AMF); 
Association for the 
Development of 
Digital Assets 
(ADAN) 

Singapore 

Fiatech Regulatory 
Standard Guidelines, 
Digital Asset Taxation 
Act and Financial 
Institutions Code of 
Conduct 

Monetary 
Authority of 
Singapore (MAS); 
Personal Data 
Protection 
Commission 
(PPDC); 
Intellectual 
Property Office of 
Singapore (IPOS) 

China 

Notice on Preventing 
Bitcoin Risks, 
Announcement on 
Preventing Token 
Issuance and Financing 
Risks, Blockchain 
Security White Paper, 
Blockchain Information 
Service Management 
Regulations and Financial 
Information Service 
Management Regulations 

Cyberspace 
Administration of 
China; Digital 
Currency Research 
Institute of the 
People's Bank of 
China; Blockchain 
Committee of 
Internet Society of 
China (SEC) 

Japan 

Digital Finance Strategy, 
Blockchain Strategy, 
General Data Protection 
Regulation and EU 
Fintech Action Plan 

European 
Securities and 
Markets Authority 
(ESMA); 
European Banking 
Authority (EBA); 
European Data 
Protection 
Supervisor (EDPS) 

Germany 

Digital Currency 
Exchange Act, Payment 
Services Act, Proposal on 
New ECO Regulation and 
Asset Settlement Act 
Enforcement Decree 

Financial Services 
Agency of Japan 
(FAS), Japan 
Blockchain 
Association 
(LIRA), Japan 
Virtual Currency 
Exchange 
Association 
(JVCEA) 

IMF 

Crypto-assets, regulatory 
challenges in the global 
economy and regulatory 
frameworks for digital 
financial services.  

International Monetary 
Fund (IMF) 

Federal Financial 
Supervisory 
Authority (BaFin); 
Federal 
Commissioner for 
Data Protection 
and Freedom of 
Information 
(BFDI); Financial 
Market Stability 
Fund (SoFFin) 

 

The UK government first proposed the concept of a 
“regulatory sandbox” [38]. The United States has 
formulated intellectual property and tax regulations for 
blockchain technology and digital assets and established 
a blockchain industry alliance to promote the 
development and regulation of the blockchain industry 
[39]. The European Commission has formulated the 
“Digital Finance Strategy 2020” and “Blockchain 
Strategy” to strengthen regulation and cooperation in the 
digital finance field. The Singapore government has 
issued a digital asset tax law, stipulating that digital asset 
transactions should be taxed [40]. Switzerland has 
formulated a series of blockchain laws and policies [41] 
to provide legal protection, guidance, and regulation for 
blockchain enterprises.  At the same time, it has also 
strengthened support and regulation of the blockchain 
industry, encouraging enterprises to develop more secure 
blockchain technology.  In 2019, the Ministry of Industry 
and Information Technology established the National 
Blockchain and Distributed Ledger Technology 
Standardization Committee to systematically promote 
standardization work and accelerate the establishment of 
a blockchain regulatory system.  

2. BLOCKCHAIN REGULATION AND 

CLASSIFICATION 

Research progress on blockchain security and regulation 
at home and abroad is shown in Table 2. Literature [20-
22, 45-49] focuses on the research of blockchain data 
security and network security issues, and does not 
discuss the overall regulation of blockchain. Literature 
[23-25, 50-56] focuses on discussing blockchain-
specific security issues such as smart contract 
vulnerabilities and consensus algorithm vulnerabilities. 
In addition to the reviews listed in Table 2, there is also 
literature discussing the development of the blockchain 
ecosystem [26-30, 57], but it does not discuss blockchain 
security regulation. 
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This paper divides existing blockchain regulatory 
schemes and literature into intra-chain regulation, inter-
chain regulation, and off-chain regulation. Intra-chain 
regulation consists of blockchain infrastructure layer 
regulation, core function layer regulation, and user layer 
regulation. It involves a large number of literatures [58-
118] and is a key level of regulation. Inter-chain 
regulation consists of two types: regulation based on the 
“governance by chain” concept and cross-chain security 
regulation [119-131]. Off-chain regulation mainly 
involves decentralized autonomous organizations 
(DAO) and communities. Due to the short development 
history of cross-chain technology and off-chain 
decentralized governance mechanisms, there are fewer 
related literatures and regulatory schemes [132-137].  

Table 2: Research progress on blockchain security 

and regulation 

Literature Focus 
Does it 
involve 
supervision? 

References[20-
22,45] 

Blockchain 
security, 
uncertainty, 
status of 
additional 
safeguards 
analyzed 

Not involved 

References[46-
48] 

Blockchain data 
security, 
network 
security, etc. 

Not 
comprehensive 

Literature[49] 
Blockchain 
application 
research 

Not involved 

References[50-
53] 

Smart contract 
vulnerability 
detection and 
repair 

Not involved 

References[23-
25,55-56] 

Constraints 
mechanism 
security 
improvements 

Not involved 

 

2.1 Intra-chain Regulation 

This section divides intra-chain regulation into three 
layers: infrastructure layer regulation, core function 
layer regulation, and user layer regulation. The 
regulatory technologies at the infrastructure layer are 
further divided into node association tracking, node 
abnormal behavior detection, and node attack traffic 
detection. The regulatory technologies at the core 
function layer are divided into abnormal transaction 
analysis and detection, smart contract security detection, 
consensus mechanism attack detection, and consortium 
chain penetration regulation. User layer regulation 
mainly targets users, including user business regulation 
and user account regulation. 

2.1.1 Infrastructure Layer Regulation The infrastructure 
layer provides the necessary hardware components and 
operating environment to support the normal operation 
of the entire blockchain system, mainly including 
computing resources for storing blockchain data and 
executing blockchain computing tasks, backup and 
recovery mechanisms, and other security and protection 
measures to ensure the connectivity and data 
transmission stability of the network infrastructure 
between nodes. 

2.1.1.1 Node Association Tracking Technology 
Blockchain node tracking technology refers to collecting 
and analyzing information such as network addresses, 
account addresses, and transactions of nodes in the 
blockchain network to construct the association 
relationship and topological structure between nodes, 
thereby understanding the connection methods, 
interaction situations, and transaction behavior 
characteristics between nodes, and achieving security 
regulation of the blockchain. Node association tracking 
technology does not affect the final state of transactions 
and blockchain, and belongs to ex-post regulation. 

Related research [58-60] mainly uses graph analysis and 
log analysis, machine learning, and cluster analysis to 
track blockchain transactions, ultimately clarifying the 
relationship between blockchain nodes. The current 
difficulty is tracking highly private cryptocurrency 
transactions. 

Graph analysis and log analysis audit. In response to the 
limitations of tracking analysis technology based on 
pollution/dyeing mentioned in literature [58-60] in terms 
of effectiveness, universality, and efficiency, Li Zhiyuan 
et al. [61] proposed a blockchain transaction tracking 
method based on node influence account balance model, 
which uses network analysis and graph data mining 
technology to track the flow of funds of specific target 
accounts through the account balance model, 
compensating for the shortcomings and deficiencies of 
existing blockchain transaction tracking research in 
terms of universality and efficiency. Focusing on the 
process tracking of consensus transactions, Li Shanshan 
et al. [62] proposed a Fabric consensus transaction 
trajectory tracking method based on custom logs, which 
uses the ELK (Elasticsearch Logstash Kibana) tool chain 
to collect and parse Fabric’s custom consensus 
transaction logs, and processes custom log business logic 
through a Spring Boot backend application, which can 
effectively track the call trajectory of Fabric’s consensus 
transactions at each node, realizing the visualization of 
consensus transaction trajectories. Focusing on node 
automatic discovery, literature [63] proposed a node 
automatic discovery mechanism based on the Kademlia 
protocol. The constructed routing table allows nodes in 
the network to gradually join their routing tables when 
discovered by other nodes, thereby realizing dynamic 
perception of the entire network by nodes. 
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Machine learning and cluster analysis. Using machine 
learning methods for blockchain node tracking can 
improve the efficiency and accuracy of tracking. 
Machine learning models can learn patterns and rules 
from a large amount of data, helping to identify and 
analyze complex node behaviors and relationships. 
Michalski et al. [64] used supervised learning methods 
to analyze the characteristics of nodes in the blockchain. 
By analyzing the behavioral characteristics of nodes in 
the blockchain network, they inferred the roles played by 
nodes in the blockchain, such as miners or exchanges. 
Although the goal of this paper is more focused on 
locating the roles and behaviors of nodes, its results can 
provide some help and clues for node tracking. Forward 
transaction tracking is a common technology used to 
analyze Bitcoin abuse and track fund flows, that is, 
starting from a given set of seed addresses known to 
belong to cybercrime activities, tracking the movement 
of Bitcoin, but it only considers forward transaction 
flows, and does not consider backward transaction flows, 
which means that in some cases, some important 
relationships and transaction information may be missed. 
In order to focus on both output transactions and input 
transactions when analyzing transactions, Gomez et 
al. [65] proposed a bidirectional exploration automated 
Bitcoin transaction tracking technology, which outputs a 
transaction graph from a given seed address belonging to 
cybercrime activities, and identifies the relationship 
paths between node activities and external services and 
other cybercrime activities. In order to prevent the 
transaction graph from expanding, this technology 
combines a labeled database with a machine learning 
classifier to quickly identify and filter out addresses 
belonging to exchanges. From the perspective of link 
prediction between nodes, Du et al. [66] proposed a 
graph neural network framework MixBroker, which uses 
original Ethereum mixed transaction data to construct a 
mixed currency interaction graph, and extracts account 
node features from the graph from multiple perspectives 
to better represent the attributes of mixed currency 
account nodes. The graph neural network is used to 
calculate the correlation probability between nodes, 
thereby determining the association relationship between 
mixed currency account nodes, which to a certain extent 
breaks the anonymity of Ethereum mixed currency 
services. 

In addition, in order to provide a higher level of privacy 
and anonymity protection, some cryptocurrencies use 
ring signatures, zero-knowledge proofs, coin mixing, 
and other technical means to hide the addresses of both 
parties to the transaction and the transaction amount, 
such as Monero [67], Zcash [68], and Dash. Although 
these anonymous coins can provide a certain degree of 
anonymity and privacy protection, they are not 
untraceable. There are currently 6 types of Zcash [68] 
tracking technologies: Danan gift attack, dust attack, 
remote side-channel attack, round-trip transaction attack, 
user behavior analysis attack, and covert channel attack, 
which can be used to infer and track the transaction 

information of Zcash nodes. In the field of Monero [67] 
technology tracking, there are currently four main types 
of tracking methods: tracking based on input-output 
relationships [69] (such as 0-mixin attack, output 
merging attack, closed set attack, etc.), tracking based on 
statistical laws (such as latest guess attack, etc.), tracking 
with partially known public keys (such as flooding 
attack, wallet ring attack, etc.), and tracking using 
Monero’s security mechanism vulnerabilities (such as 
malicious remote node attack, etc.). 

2.1.1.2 Node Abnormal Behavior Detection Technology 
Blockchain nodes may attempt to perform malicious 
operations, attack networks, phish, tamper with data, or 
engage in fraudulent activities. Node detection refers to 
analyzing and monitoring node behavior in the 
blockchain network to identify possible malicious nodes 
or abnormal behaviors, and belongs to ex-ante 
regulation. Node detection methods are diverse, and 
currently mainly focus on traffic analysis and phishing 
node detection. 

In terms of traffic analysis, Liu Guozhi [70] proposed an 
abnormal traffic detection algorithm based on federated 
learning and representation learning, and implemented a 
distributed abnormal traffic detection system for 
detecting abnormal nodes in the blockchain network. 
This system can automatically learn traffic data features, 
allow participants to dynamically enter and exit, and 
control the entire process through smart contracts. 
Unlike literature [70], which focuses on abnormal 
detection through specific algorithms and systems, 
Sanda et al. [71] used deep learning convolutional neural 
networks (CNN), K-nearest neighbors (KNN), decision 
trees, and multi-layer perceptrons (MLP) algorithms to 
determine classifiers and predict malicious nodes, which 
can be further extended to analyze abnormal behavior of 
verification nodes in proof of stake (PoS) consensus. 

In terms of phishing node detection, current methods for 
detecting Ethereum network phishing mainly focus on 
transaction features and local network structure, but have 
limitations in handling complex interactions between 
edges and large graphs. In response to this problem, 
Zhang et al. [72] proposed an Ethereum phishing node 
detection method based on graph convolutional 
networks (GCN), which converts complex transaction 
networks into three simple inter-node graphs, and uses 
GCN to generate node embeddings and global structural 
information to identify phishing nodes. Similarly, Yu et 
al. [73] used a message-passing based GCN to first 
construct a transaction network, and then extract and 
classify node information to detect phishing nodes. Both 
of these works use GCN to detect Ethereum phishing 
nodes, and both involve the processing of transaction 
networks and the use of node information, which solves 
the limitations of current detection methods in handling 
complex interactions and large graphs, and improves the 
effectiveness and accuracy of detection. However, the 
former mainly focuses on using GCN to generate node 
embeddings and global structural information to identify 
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phishing nodes, while the latter focuses on first 
constructing a transaction network, and then extracting 
and classifying node information. 

By timely identifying and responding to malicious 
nodes, abnormal behaviors, and potential risks, the anti-
attack capability of blockchain systems can be enhanced, 
and a more reliable infrastructure can be provided for 
various application scenarios. However, node detection 
technology still faces some challenges, such as 
insufficient privacy protection during detection, low 
detection efficiency, and low accuracy. 

2.1.1.3 Node Attack Traffic Detection Technology At 
the infrastructure layer, attacks that significantly harm 
the normal operation of blockchain nodes include 
Eclipse attacks [74] and DDoS attacks [76], whose 
purpose is to destroy the availability and functionality of 
the underlying network infrastructure. Researchers have 
proposed various detection methods based on deep 
learning to extract attack features from traffic data, 
focusing on how to identify and defend against attacks 
on blockchain infrastructure to ensure its stable and 
secure operation. 

Eclipse Attack Detection Eclipse attacks rely on the 
cooperation of multiple nodes. By controlling the 
network connections of target nodes, the target nodes are 
isolated from other honest nodes. The client cannot 
distinguish between the canonical view of the blockchain 
and the view provided by the attacker. This attack has the 
characteristics of concealment and concurrency. 
Currently, most existing methods use custom behavior 
features and deep learning [74], immunity-based 
abnormal detection methods [77], suspicious timestamp-
based detection methods, and communication using 
blockchain clients [78] to detect Eclipse attacks. In order 
to more accurately describe the behavioral 
characteristics of attack traffic, Dai et al. [74] enhanced 
the detection capability for Eclipse attack traffic by 
defining multi-level traffic features, improving the 
upsampling algorithm, and combining deep learning 
models, using CNN and bidirectional long short-term 
memory (Bi-LSTM) networks to extract deep features 
from Eclipse attack traffic, and integrating the feature 
extraction results into hybrid features through a multi-
head attention mechanism. Detection based on 
suspicious block timestamps refers to determining 
whether the network is segmented by detecting the time 
interval between newly created blocks, but this method 
requires about 2-3 hours to relatively confirm whether 
the client is under attack. In order to reduce the average 
attack detection time, Alangot et al. [78] proposed that 
Bitcoin clients pass messages by establishing 
connections with servers on the Internet to exchange 
their blockchain views, and this method does not require 
introducing any dedicated infrastructure or changing the 
Bitcoin protocol and network. 

Erebus Attack Detection Erebus attacks mainly target 
blockchain systems that use proof of work (PoW) 

consensus. Attackers interfere with the normal operation 
of target nodes by controlling a large number of IP 
addresses to form a fake network. In response to the 
problems of single detection objects, weak dynamic 
attack target perception, and high node resource 
requirements in existing methods, Dai et al. [75] 
designed a two-stage feature selection algorithm based 
on ReliefF_WMRmR and a multi-modal classification 
detection model based on deep learning by combining 
traffic behavior features with routing states based on 
multi-modal deep feature learning, and constructed a 
multi-modal neural network based on MLP, which can 
effectively detect Erebus attacks with high accuracy. 

 DDoS Attack Detection In terms of DDoS attack 
detection, Dai et al. [76] combined statistical and 
machine learning methods. By capturing traffic data at 
the node end of the blockchain network, cross-layer 
convolution operations are performed on the pre-
processed traffic to extract abstract features of highly 
robust attack traffic, and an improved stochastic gradient 
descent algorithm is used to globally optimize the model 
parameters to prevent training parameter oscillation. 
Link flooding attack (LFA) is a new type of DDoS attack 
that uses low-rate traffic to flood a part of target links in 
the blockchain network to block normal traffic passing 
through these links and cut off the connection between 
the server and the network. In response to LFA, literature 
[79] used the time series prediction capability of long 
short-term memory networks to detect LFA, but whether 
it can accurately identify suspicious attack sources by 
calculating the similarity of different traffic sources 
remains to be further verified. 

In addition, the visualization services and tools inherent 
in blockchain can be used as auxiliary tools for node 
association tracking and attack traffic detection. For 
example, blockchain browsers and data analysis tools 
such as Gephi, Cytoscape, Tokenview, and BlockAPI 
clearly present the transaction relationships or data 
interaction relationships between nodes or accounts. 

In summary, for infrastructure layer regulation, 
blockchain node association tracking and detection 
technologies are mainly divided into two categories: one 
is to track their activities by monitoring message passing 
and transaction broadcasting between nodes in the 
blockchain network. Regulators can collect and analyze 
these data to understand node behavior patterns, network 
topology, and transaction flow; the other is to use data 
visualization technology to dynamically perceive the 
entire blockchain network through the routing table in 
blockchain nodes. Regulators can intuitively observe the 
connection relationships between nodes, transaction 
flows, and data changes. For the former, abnormal 
behaviors with defined detection rules can achieve 
relatively ideal results through data analysis. However, 
once new abnormal behaviors occur, new transaction 
datasets need to be organized and detection algorithms 
need to be redesigned for calculation, which has poor 
adaptability. The latter relies on data synchronization, 
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and it must be ensured that each node can achieve data 
consistency at a certain time. By dynamically visualizing 
operations to construct knowledge graphs, abnormal 
address clusters or nodes can be clearly discovered, 
making it easier to regulate these address clusters or 
nodes. 

Overall, researchers tend to combine multiple technical 
means, especially graph analysis and machine learning, 
to achieve more intelligent node tracking and 
visualization at the infrastructure layer to improve the 
efficiency of blockchain regulation and the clarity of 
node relationships. Existing research explores how to 
improve the efficiency and accuracy of blockchain node 
tracking and detection. Some research focuses on 
specific tracking technologies and visualization 
methods, such as improving the efficiency of node 
tracking based on graph data mining, machine learning, 
and other technologies. Other research explores 
technical means to detect and defend against malicious 
nodes in different types of attacks (such as Eclipse 
attacks, DDoS attacks). The common goal of these 
studies is to enhance the security and regulability of 
blockchain networks, forming a multi-level, 
comprehensive node tracking and visualization 
framework. Future research directions may focus on 
improving the universality and efficiency of tracking 
technologies, exploring more secure and private tracking 
technologies, and further enhancing the security and 
robustness of blockchain networks. 

2.1.2 Core Function Layer Regulation 

The core function layer usually consists of core 
components such as transaction storage, transaction 
processing, and smart contracts, which are used to 
implement the basic functions and characteristics of the 
blockchain and provide reliable basic support for the user 
layer. The main regulatory methods are abnormal 
transaction analysis and detection, smart contract 
security detection, and consensus mechanism attack 
detection. In addition, consortium chains can achieve 
penetration regulation at the core function layer. 

2.1.2.1 Abnormal Transaction Analysis and Detection 
Core function layer regulation mainly focuses on 
transaction data on the blockchain and the execution of 
smart contracts. Researchers have proposed various data 
analysis methods to analyze and detect on-chain data. A 
common method is to identify abnormal transactions and 
potential fraudulent behaviors based on data mining and 
machine learning technologies. Regulators can build 
models and algorithms to analyze the patterns and rules 
of transaction data and identify transaction behaviors 
that do not comply with the rules. Another method is to 
use graph theory and neural networks to analyze and 
study transaction flows and connection relationships in 
the blockchain network. By constructing transaction 
graphs and network maps, visualizing the relationships 
and connections between on-chain transaction data, 
identifying transaction flows, interaction patterns 

between addresses, and fund flow paths, abnormal 
nodes, transaction paths, and centralization can be 
discovered, thereby evaluating the security and stability 
of the blockchain network. 

Abnormal Transaction Analysis and Detection Based on 
Data Mining and Machine Learning Currently, research 
on abnormal transaction analysis based on data mining 
and machine learning mainly focuses on deeply mining 
the features of blockchain node transaction data and 
discovering patterns and rules therein, so as to more 
effectively regulate the transaction behavior of 
blockchain networks. Zhu Huijuan et al. [80] proposed a 
blockchain abnormal transaction detection model, which 
adopts a residual network structure ResNet-32, and uses 
adaptive feature fusion methods to fully exploit the 
advantages of high-level abstract features and original 
features, improving the performance of blockchain 
abnormal transaction detection. This provides ideas for 
model construction and feature fusion for subsequent 
research. Taking the analysis of transaction motives as a 
starting point, Shen Meng et al. [81] designed a 
blockchain digital currency abnormal transaction 
behavior identification method based on motive analysis, 
selected airdrop candy and greedy funding as typical 
abnormal transaction behaviors, formulated judgment 
rules respectively, and abstracted abnormal transaction 
pattern diagrams, providing a reference for the 
classification and pattern research of abnormal 
transaction behaviors. Similarly, Zhang Xiaoqi et 
al. [82] proposed a network representation learning 
model DeepWalk-Ba for feature extraction of 
blockchain abnormal transactions. By constructing 
address and entity transaction graphs, combining 
features and machine learning for transaction entity 
identification, and extracting multi-granularity 
transaction patterns and user portraits based on 
transaction data analysis, timely and reliable detection of 
abnormal transactions in the blockchain can be achieved. 

Abnormal Transaction Analysis and Detection Based on 
Graph Analysis and Neural Networks Wu et al. [83] 
designed two different community detection methods for 
Bitcoin and Ethereum networks, respectively proposing 
specific clustering algorithms derived from spectral 
clustering algorithms and novel community detection 
algorithms for low-level signals on graphs, helping to 
find user communities based on user token subscriptions. 
Further, Lin Wei [84] studied abnormal transaction data 
detection based on blockchain technology, and proposed 
a blockchain abnormal transaction data detection model 
based on a custom sliding window mechanism, a fully 
connected neural network, and a multi-channel output 
feature vector fusion of bidirectional gated recurrent 
units. In order to protect user privacy and reduce the risk 
of data being illegally obtained or abused during 
detection, Chen Binjie et al. [85] proposed a KNN-based 
blockchain abnormal transaction detection scheme with 
privacy protection. Accounting nodes randomize 
transaction data features by using matrix multiplication, 
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and then the cloud server uses KNN to detect abnormal 
transactions on the randomized transaction data features. 

In terms of abnormal detection of smart contracts in 
blockchain, Liu et al. [86] proposed detecting fraudulent 
contracts by using transaction data and code data of 
Ethereum smart contracts, extracting features from 
complex smart contracts, effectively identifying 
abnormal contracts, and constructing a heterogeneous 
graph transformation network suitable for abnormal 
detection of smart contracts to detect financial fraud. 
However, whether more precise feature extraction 
methods can be developed to improve the efficiency of 
smart contract abnormal detection still needs further in-
depth exploration. 

2.1.2.2 Smart Contract Security Detection Smart 
contracts, as a core component of blockchain 
technology, have received much attention for their 
security issues. Research in this area is currently 
relatively mature [53, 87-90]. To ensure brevity, this 
section only briefly discusses relevant literature from a 
regulatory perspective. 

Smart contract vulnerability detection methods include 
static analysis, dynamic analysis, formal verification, 
metamorphic testing, and graph neural network-based 
methods. These methods aim to identify potential 
vulnerabilities in smart contracts, such as reentrancy 
attacks, integer overflows, permission issues, and 
timestamp dependency issues. Since abnormal detection 
of smart contracts occurs before or after transactions and 
does not affect the final transaction results, this belongs 
to ex-ante or ex-post regulation. 

1) Static Analysis By statically scanning and 
analyzing contract code, potential vulnerabilities 
are detected. Common tools include SmartCheck, 
Slither, etc. 

2) Dynamic Analysis By simulating contract 
execution and monitoring its behavior, potential 
security issues can be found. ReGuard [91] 
generates random and diverse transaction data 
using fuzz testing, simulates possible attack 
scenarios, and dynamically identifies potential 
reentrancy attacks in smart contracts by recording 
key execution traces. 

3) Formal Verification Verifies whether smart 
contracts comply with expected design attributes 
and security specifications. ZEUS [92] is an 
automated formal verification tool for smart 
contracts, which converts Solidity source code into 
LLVM (low-level virtual machine) intermediate 
language, and uses XACML (eXtensible access 
control markup language) to design five security 
vulnerability detection rules to determine the 
security of target programs during formal 
verification. 

4) Metamorphic Testing By generating test cases and 
executing them in smart contracts, it verifies 
whether the test results meet expectations. In 
response to possible security vulnerabilities, Chen 
Jinfu et al. [93] designed different metamorphic 
relationships and performed metamorphic testing. 
By verifying whether the source test cases and 
subsequent test cases satisfy the metamorphic 
relationship, it determines whether there are 
related security vulnerabilities in the smart 
contract. 

5) Deep Learning Based on the source code, 
operation code, and control flow patterns of smart 
contracts, features are extracted, and deep learning 
models (such as CNN, RNN, and Transformer) are 
used to train and predict whether there are security 
vulnerabilities. Deng et al. [94] proposed a smart 
contract vulnerability detection method using deep 
learning and multi-modal decision fusion, 
considering the code semantics and control 
structure information of smart contracts, and 
integrating source code, operation code, and 
control flow patterns through multi-modal 
decision fusion. Zhang et al. [95] proposed a 
hybrid deep learning model - convolutional and 
bidirectional gated recurrent unit (CBGRU), 
which combines word embedding methods 
(Word2Vec, FastText) and deep learning methods 
(LSTM, GRU, Bi-LSTM, CNN, BiGRU). Word 
embedding methods can convert words or phrases 
into vector representations to capture their 
semantic relationships. Different deep learning 
models extract smart contract features from 
different perspectives, combine them, and input 
them into a classifier for smart contract 
vulnerability detection. 

Smart contract security is an important and complex field 
in blockchain technology. Many studies have been 
devoted to the detection and repair of smart contract 
security, but most vulnerability detection tools can only 
detect single and old versions of smart contract 
vulnerabilities [96]. Future research should focus on 
further improving the automation, efficiency, and 
accuracy of detection tools, combining static analysis 
methods with dynamic analysis methods to detect more 
types of vulnerabilities in multi-version smart contracts, 
thereby achieving higher detection accuracy. 

2.1.2.3 Consensus Mechanism Attack Detection 
Consensus protocols are sets of rules in blockchain 
systems that determine transaction verification and block 
addition. Some common and harmful attacks include 
double-spending attacks, 51% attacks, selfish mining 
attacks, and saving attacks. Research on 51% attacks and 
double-spending attacks is relatively extensive and 
mature [97-100]. To ensure brevity, only saving attacks 
and selfish mining attacks, which have a greater impact 
on regulation, are briefly discussed. 
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Saving Attack is a new type of attack that can delay 
nodes from reaching consensus. Attackers “save” their 
proposed blocks during temporary consensus failures 
and use these rights to trigger another consensus failure 
after the network returns to normal, which leads to a 
decrease in blockchain performance and an increase in 
the delay of block finalization. Otsuki et al. [101] 
conducted a simulation study of Saving Attack on 
various fork selection rules, including the longest chain 
rule, GHOST (greedy heaviest-observed sub-tree), LMD 
GHOST (latest-message-driven GHOST), and FMD 
GHOST (fresh-message-driven GHOST). The research 
results show that Saving Attack has a very negative 
impact on consensus. Under experimental conditions, an 
attacker with 30% voting power successfully prevented 
LMD GHOST consensus for 83 minutes after saving 
their blocks for 32 minutes. 

Selfish mining attacks are carried out by a small number 
of malicious miners or mining pools who exploit 
vulnerabilities or potential weaknesses in the system 
design to obtain more mining rewards unfairly. Wang et 
al. [102] used machine learning methods to detect selfish 
mining attacks in blockchain. They used logistic 
regression and fully connected neural networks 
(including 10 hidden layers and 10 neurons per layer) to 
train classification models on the training set, and judged 
whether unknown samples belonged to selfish mining 
attacks by learning the features of the samples, or 
belonged to ex-post regulation methods. 

2.1.2.4 Consortium Chain Penetration Regulation 
Consortium chain penetration regulation is mainly 
located at the core function layer. Penetration regulation 
is a method introduced from the financial field into 
blockchain regulation, which refers to the regulation and 
traceability of all nodes and transaction data on the 
consortium chain through the penetration of regulatory 
nodes to ensure the security and stable operation of the 
consortium chain, and belongs to in-process regulation 
methods. In consortium chain regulation, regulatory 
logic can be embedded in the components of the core 
function layer, so penetration regulation can go deep into 
each entity for regulation and supervise and audit all 
transactions and information. 

Liu Huixia et al. [103] proposed a blockchain-based 
security regulation scheme for shared charging piles, 
constructing a shared charging trust model based on a 
dual chain. They built a trust relationship between 
transaction parties through authentication contracts and 
designed a penetration regulation scheme to verify the 
identity of users, pile owners, or operators upwards, and 
verify the accuracy of charging amount, charging speed, 
and other information downwards, effectively regulating 
all participants and specific transaction data of car shared 
charging.  Wang et al. [105] proposed an illegal data 
hierarchical interception scheme based on consortium 
chains. By using regular expressions and smart contracts 
at the application end to mark and block illegal data with 
different degrees of impact, it can effectively regulate 

illegal data in the blockchain. Different from previous 
single consortium chains, Zhang Jianyi et al. [106] 
adopted a regulable digital currency model with a 
consortium chain-public chain dual-chain structure, 
which uses the consortium chain as the core participant 
in consensus, ensures the privacy of user transaction data 
through secret sharing, and at the same time uses the 
public chain as the operating basis, allowing ordinary 
users to participate in and witness the maintenance of the 
system. In order to achieve comprehensive protection of 
transaction privacy and fine-grained mandatory 
regulation, Huo Xinlei et al. [107] proposed a 
consortium chain scheme with authorized regulation and 
privacy protection functions, including the division of 
member roles under the consortium chain and chameleon 
hash functions, zero-knowledge proofs, and other 
cryptographic technologies. Literature [106] focuses on 
the dual-chain structure and user participation, while 
literature [107] focuses on achieving comprehensive and 
fine-grained regulation and privacy protection through 
technical means. 

In multiple application scenarios of consortium chains, 
researchers have also proposed some personalized 
solutions. In the field of agricultural machinery 
scheduling, Yang et al. [108] proposed a consortium 
blockchain-based agricultural machinery scheduling 
system. The upper-layer regulation improves the 
efficiency and security of the consensus algorithm and 
allows supervisors to block users with malicious 
intentions, ensuring the security of the system and 
improving the transparency and efficiency of data flow 
in the field of agricultural machinery scheduling. In the 
field of construction engineering, Li et al. [109] 
proposed the TABS (two-layer adaptive blockchain-
based supervision) model for supervising off-site 
modular housing production, which realizes 
communication and transactions between adaptive 
private side chains and the main chain, ensuring the 
authenticity of operation records and protecting 
participant privacy, providing an unalterable and 
privacy-preserving regulatory mechanism for the 
construction engineering industry. 

In addition, regulatory agencies can be considered as 
privileged nodes to access the consortium chain, and the 
effect of penetration regulation can be achieved by 
tracing and auditing on-chain data, which is a feasible 
regulatory direction. 

In summary, core function layer regulation, in terms of 
abnormal transaction detection, researchers have 
proposed various methods to detect and analyze 
abnormal transactions on the blockchain, including 
abnormal transaction identification methods based on 
data mining and machine learning technologies, and 
using graph theory and neural networks to analyze and 
study transaction flows and connection relationships. 
Different studies have proposed various models and 
algorithms. For example, Zhu Huijuan et al. [80] used a 
residual network structure to improve detection 
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performance, while Zhang Xiaoqi et al. [82] performed 
transaction entity identification through network 
representation learning. Although these methods differ 
in technical details, their common goal is to improve the 
regulatory capabilities of blockchain networks and 
ensure the legality of transaction behavior. In terms of 
smart contract security detection, it can be seen that 
researchers refer to and learn from each other’s work in 
abnormal transaction analysis and smart contract 
security. The static analysis, dynamic analysis, and 
formal verification methods mentioned in the literature 
complement each other and detect potential 
vulnerabilities in smart contracts from different angles. 
For example, formal verification methods verify whether 
smart contracts comply with design attributes, while 
dynamic analysis methods discover security issues by 
simulating smart contract execution. These studies are 
jointly committed to improving the security of smart 
contracts and reducing the risks brought by potential 
vulnerabilities. In terms of consortium chain regulation, 
in contrast to public chains, since regulation can be 
introduced as a basic function into the core function 
layer, or regulatory parties can be connected as nodes 
with regulatory authority, consortium chains can achieve 
penetration regulation. 

2.1.3 User Layer Regulation 

The user layer provides blockchain interfaces, 
blockchain nodes, user wallets, and other functions, 
supporting developers and miners to participate, use, and 
maintain the blockchain. 

2.1.3.1 User Business Regulation User business 
regulation at the user layer mainly focuses on user 
business aspects, such as double-spending, false 
transactions, money laundering, Ponzi schemes, illegal 
token issuance, etc. Abnormal transaction behavior 
analysis and detection methods can be used to detect 
such businesses. Abnormal transaction behavior refers to 
the behavior of participants in a blockchain system that 
does not conform to normal transaction behavior 
patterns. In response to these abnormal transaction 
behaviors, the design and regulatory mechanisms of 
blockchain systems need to consider security and 
compliance, including identifying abnormal transaction 
behaviors, monitoring transaction patterns, and 
implementing compliance rules, etc., which are ex-post 
regulation methods, to reduce and prevent the occurrence 
of abnormal transaction behaviors. Related research 
focuses on abnormal transaction behaviors of blockchain 
users and corresponding regulatory mechanisms, which 
correspond to blockchain users and blockchain 
regulatory agencies, respectively. 

Currently, blockchain abnormal transaction behavior 
identification methods have problems such as unclear 
identification targets, low efficiency in processing 
massive data, and single identification dimensions. In 
response to these problems, Zhao Zening [110] proposed 
an incremental identification method based on heuristic 

address clustering and a transaction behavior prediction 
method based on transaction subgraph partitioning, 
which improved the address clustering algorithm and 
improved the prediction accuracy by constructing 
transaction graphs and using graph neural networks. Qu 
Yuan [111] studied abnormal transaction behaviors in 
Bitcoin from two levels: macroscopic traffic data and 
microscopic transaction data. For macroscopic traffic 
data, unsupervised abnormal analysis and alarm 
functions were achieved by combining support vector 
machines and encoders and decoders. For microscopic 
transaction data, evolutionary graph convolutional 
networks (GCN) and time graph attention (TGA) 
mechanisms were used for feature extraction, and 
random forests were used for abnormal detection and 
alarming of illegal transactions, providing a more 
comprehensive abnormal detection solution. Existing 
solutions have improved identification accuracy, 
detection precision, and efficiency, but whether machine 
learning algorithms and encryption technologies can be 
combined to enhance the existing blockchain abnormal 
transaction behavior identification effect and privacy 
protection function still needs further in-depth 
exploration. 

2.1.3.2 User Account Regulation Private keys are crucial 
for users to access their accounts and assets. Hackers 
may attack users’ wallets, obtain private keys or tamper 
with transaction information by forging identities, 
inducing or deceiving users, thereby stealing assets. 
Ethereum has attracted a large number of users and 
developers, however, malicious users and attackers also 
use the anonymity and openness of Ethereum to engage 
in various illegal activities, such as pyramid schemes, 
fraud, money laundering, etc. Researchers have 
proposed machine learning, graph analysis, and time 
series analysis methods for Ethereum accounts to detect 
and identify malicious accounts, which belong to ex-ante 
or ex-post regulation methods. 

In response to transaction security issues caused by 
fraudulent accounts in blockchain, Zhou Jian et al. [112] 
proposed a fraudulent account detection and feature 
analysis model based on machine learning, and 
introduced SHAP values to provide a more accurate 
prediction model through on-chain data feature analysis. 
Farrugia et al. [113] proposed a new method for 
detecting illicit users in Ethereum, which detects illicit 
activities on the Ethereum network at the account level 
by feature extraction and feature importance analysis, 
combined with the XGBoost classification model. 

Liang Fei et al. [114-115] successively proposed 
methods based on hyperbolic graph neural convolutional 
networks (LSC-GCN) [114] and subspace graph 
clustering (GCN-Clustering) [115] to detect malicious 
Ethereum accounts. In response to the problems of 
insufficient labels in datasets leading to insufficient 
model training and low identification efficiency in 
existing models, GCN-Clustering converts original node 
address features into node features containing cluster 
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information, uses the clustering information of the 
dataset itself to enhance the feature extraction capability 
of nodes, and at the same time uses GCN for supervised 
learning, further strengthening the embedding 
expression of cluster information obtained in 
unsupervised learning in node features. 

Shi Tuo et al. [116] incorporated transaction time 
information into the Ethereum address account feature 
model, proposed a graph attention mechanism based on 
time series transaction relationships, and improved the 
traditional attention network. By using the attention 
mechanism, the central node and neighboring nodes are 
aggregated, which can effectively identify Ethereum 
addresses with abnormal transaction behaviors. 

For the wallet security of Bitcoin and three privacy-
focused cryptocurrencies: Dash, Monero, and Zcash, 
Biryukov et al. [117] manually checked and used static 
analysis tools (such as FlowDroid, SmartDec Scanner) 
to scan and analyze wallets, detecting security threats in 
wallet installation methods, permission requirements, 
and privacy policies. They proposed a transaction 
clustering method based on transaction time analysis, 
listening to network traffic and attempting to associate 
attackers’ cryptocurrency addresses with IP addresses or 
other identity information. 

In summary, for the identification and regulation of 
abnormal behaviors (such as double-spending, false 
transactions, money laundering) in blockchain systems, 
researchers have proposed a series of methods based on 
heuristic address clustering, transaction subgraph 
partitioning, Ethereum Ponzi scheme detection, etc., 
aiming to improve the accuracy and efficiency of 
abnormal behavior identification. In addition, this 
section also focuses on account security and regulation 
issues, especially the theft of assets due to private key 
leakage. Existing research uses machine learning, graph 

analysis, and time series analysis methods to detect and 
identify malicious accounts and improve account 
security. With the continuous evolution of blockchain 
technology and the expansion of its application scope, 
future research can develop towards more refined 
abnormal behavior detection methods, more effective 
account security protection strategies, and more in-depth 
data analysis and mining technologies to adapt to 
increasingly complex and diverse security threats. At the 
same time, with the continuous improvement and 
strengthening of regulatory regulations, researchers also 
need to pay more attention to the compliance of 
blockchain systems to ensure their sustainable 
development and widespread application in business and 
finance. 

Table 3 shows the comparison of blockchain regulatory 
technologies related to the infrastructure layer, core 
function layer, and user layer, where × indicates that it is 
not considered or is not the focus of the solution, and √ 
indicates that the solution is involved. 

2.2 Inter-chain Regulation 

Inter-chain regulation focuses on the interaction and 
interoperability regulation between different 
blockchains. The core services of inter-chain regulation 
are cross-chain asset exchange, inter-chain 
communication and data sharing, cross-chain App 
operations, smart contract interoperability, decentralized 
identity authentication, etc. There are two types of inter-
chain regulation: one is to deploy regulatory logic on the 
regulatory chain based on the core idea of “governance 
by chain,” where the regulated chain synchronizes data 
with the regulatory chain, and the regulatory chain can 
operate on the regulated chain; the other is to regulate 
existing cross-chain protocol 

 

Table 3. Comparison of blockchain regulatory technologies

Section Blockchain Monitoring Technology Comparison Applicable Monitoring 

Method 

Network 

Security 

Supervisi

on Layer 
Use ELK + Kafka + Fabric for transaction data trading 
monitoring 

Fabric Strong ✗ 

Based on Kademlia protocol for node autonomous 
discovery 

Public Strong ✗ 

Based on Ethereum/chain of blocks and the concept of 
account-based models of blockchain 

Bitcoin Strong ✗ 

Node capability-based account structure model for 
blockchain transmission and method 

Ethereum Public ✗ 

Use machine learning to predict abnormal node 
behavior based on network data 

Bitcoin Strong ✗ 

Double spending attack detection based on Bitcoin 
trading data analysis (124) 

Bitcoin Strong ✗ 

Basic 

Infrastru

cture 

Detection of nodes in the network and classify them, 
analyzing malicious nodes' behavior 

Public Medium ✓ 

Ability to classify nodes based on node interaction 
behavior 

Fabric Weak ✗ 
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Based on GNX node classification, detect network 
nodes (123-125) 

Ethereum Strong ✗ 

Use based on anomaly detection methods to study 
network nodes (126-127) 

Ethereum Strong ✗ 

Use of KNN for network node classification Public Medium ✓ 
Use of random forest for abnormal node detection 
based on the network environment 

Ethereum Strong ✗ 

Node 

Behavior 

Analysis 

& 

Detectio

n 

Methods 

Detect and analyze new abnormal behavior of nodes 
based on current network data (128) 

Public Medium ✗ 

Based on signature and machine learning to detect new 
abnormal behaviors, such as DDoS attacks (134) 

Public Medium ✗ 

Use of graph algorithms to analyze communication 
relationships between nodes (134) 

Public Medium ✗ 

Use of deep learning to classify malicious behaviors, 
such as KNN for abnormal behavior detection (91) 

Public Medium ✓ 

Core 

Trust & 

Security 

Automatic detection of trustworthiness based on 
behavior model (138) 

Public Medium ✗ 

Construct local security models based on 
communication behaviors (92) 

Public/Weak Weak ✗ 

Use abnormal behavior models for detection and 
prevention of malicious behaviors (90) 

Public Medium ✗ 

Detect new malicious behavior patterns in blockchain 
communication (91) 

Public Medium ✗ 

Shared 

Mechani

sms for 

Security 

Use of simulations to analyze the impact of malicious 
behaviors on consensus (101) 

POS Strong ✗ 

Use of replay attacks and attack simulation models to 
analyze malicious attacks (102) 

Bitcoin Strong ✗ 

Construct-based security mechanism for shared 
liability and design trust protocols (103) 

Ethereum Strong ✗ 

Role-based permission control based on security 
policies for secure access (104) 

Ethereum Medium ✓ 

Distribut

ed 

Identity 

and User 

Manage

ment 

Use of identity management and identity 
authentication based on blockchain (105) 

POS Strong ✗ 

Use of blockchain for user identity management and 
privacy protection (106) 

Bitcoin Medium ✓ 

User behavior tracking and account analysis based on 
user activity (107) 

Ethereum Weak ✗ 

Use of LSC-GCN for GCN-Clustering methods to 
analyze user behaviors (113-116) 

Ethereum Strong ✗ 

2.2.1 Regulation Based on the “Governance by Chain” 
Concept Kevin Werbach et al. [119] first proposed the 
concept of “governance by chain” in the legal field. Chen 
Chun [57] further deepened this concept. The basic 
principle of “governance by chain” technology is to use 
one blockchain as a regulatory chain to regulate another 
blockchain, i.e., the regulated chain. The regulator can 
create a smart contract on the regulatory chain, which 
stipulates the rules and conditions to be complied with 
on the regulated chain. This leads to an important 
research direction - blockchain “compliance” regulation, 
which aims to ensure that blockchain transactions and 
activities comply with legal regulations, norms, and 
standards. These requirements can be any type of rule, 
such as transaction restrictions, prevention of double-
spending, anti-money laundering, etc. When some nodes 
or users on the regulated chain violate these rules, the 
regulator can initiate sanctions on the regulatory chain 
through smart contracts. These sanctions usually involve 
penalties or disciplinary measures, such as freezing 

accounts, prohibiting transactions, or revoking 
transactions. 

Ethereum, through ERC (Ethereum Request for 
Comments), standardizes smart contracts. From ERC20 
to ERC1400, it has achieved a shift from avoiding 
regulation to embracing regulation [120]. ERC20 only 
requires providing functions such as token issuance and 
transfer, while ERC1400 stipulates the standard for 
issuing security tokens, requiring smart contracts to 
provide relevant legal documents and perform restriction 
judgments before executing transfers, providing 
readable explanations of judgment results, thereby 
realizing functions such as locking positions at the 
contract level, KYC/AML verification, and freezing 
in/out accounts. Libra also released White Paper 2.0 in 
2020 to respond to regulatory concerns, including 
compliance controls (such as VASP certification, non-
custodial wallet restrictions, etc.), making all 
transactions on the Libra blockchain enforce certain 
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compliance requirements. These measures are all aimed 
at improving the compliance and transparency of 
blockchain transactions and better adapting to regulatory 
requirements. Boya Zheng Chain provides a smart 
contract programming language RegLang [121] for 
regulatory technology. According to regulatory needs, it 
designs the syntax rules and type system of contracts. 
Regulators can automatically implement penetration 
regulation through smart contracts. Regulated objects 
can improve automated compliance capabilities through 
regulatory rules published by regulators, improving 
regulatory efficiency and accuracy, and making 
regulation more standardized, intelligent, and digital. Lu 
et al. [122] built the OriginChain system to provide 
transparent, tamper-proof, and traceable data, and 
automatically perform compliance checks. The system 
generates smart contracts representing legal agreements, 
automatically checks and executes services and terms, 
and checks whether legal and regulatory requirements 
are met. Mao Xiangke et al. [123] built a blockchain 
system with regulatory functions and rollback 
operations, realizing regulation of blockchain 
transactions at three different stages: pre-event, in-event, 
and post-event. 

Some domestic enterprises are also actively promoting 
the implementation of “governance by chain” 
technology. Tencent Security released the “CCGP 
Cross-Chain Governance White Paper,” realizing 
“governance by chain” cross-chain interoperability and 
collaboration. This system has five major advantages: 
strong universality, easy scalability, multi-party co-
governance, high efficiency, high security, and traceable 
records, covering three application scenarios: wide-area 
data sharing, joint traceability, and wide-area evidence 
storage, which is expected to promote the application of 
blockchain technology in multiple scenarios. The 
Beijing Internet Court issued the “Tianping Chain” 
application access technology and management 
specifications [124], which standardize the technology 
and process of blockchain application access, improving 
the credibility and efficiency of electronic evidence. This 
specification involves three aspects: system security of 
the access platform, compliance of electronic data, and 
security of blockchain, promoting the application of 
blockchain technology in the judicial field. Literature 
[125-128] discusses smart contract compliance 
verification models in different application scenarios 
such as IoT, law, and cloud services, verifying and 
confirming the compliance of smart contracts in different 
environments. 

Jing Pujie et al. [129] proposed a hierarchical cross-
chain regulatory architecture based on the idea of 
“governance by chain,” and designed a “regulatory 
chain-business chain” cross-chain collaborative 
governance model in the regulatory architecture, which 
improved the centralized and authoritarian nature of 
regulatory behavior. The designed cross-chain 
interaction standard data structure with universality 
ensures the smooth, secure, and efficient cross-chain 

regulatory process. Zhang et al. [130] proposed their on-
chain hierarchical structure, on-chain and off-chain 
hybrid storage model, on-chain regulatory process, and 
traceable transaction information process. Through pre-
event, in-event, and post-event collaborative regulation, 
multi-party hierarchical and multi-dimensional 
regulation of the entire data transaction process is 
achieved, and regulatory smart contracts are used to 
achieve hierarchical regulation of multiple regulators 
and post-event traceability (ex-post regulation), which 
can effectively isolate and protect sensitive information 
between data transactions. 

2.2.2 Cross-chain Security Regulation Cross-chain 
technology is an important technical means to achieve 
inter-chain interconnection and value transfer. Cross-
chain technology realizes interoperability and data 
exchange between different blockchains, but it also 
brings new security risks. 

The security of cross-chain systems mainly depends on 
atomicity, inter-chain information synchronization, and 
network channel security. Given the diversity of 
heterogeneous blockchains in terms of block structure, 
consensus mechanisms, and complex working 
mechanisms, coupled with inherent security 
vulnerabilities in cross-chain technology, such as defects 
in the principles and implementation mechanisms of 
cross-chain technology, all these factors may cause 
security risks. In addition, if the consensus algorithm of 
the underlying blockchain has vulnerabilities or is 
compromised, the security of cross-chain interactive 
operations will also be threatened. 

The notary mechanism may lead to collusion attacks and 
single point of failure risks. Notaries are nodes 
responsible for verifying and confirming cross-chain 
transactions. If notaries collude or a notary is attacked, 
the security of the entire cross-chain system will be 
threatened. The hash lock mechanism is a time-
constrained mechanism used for cross-chain 
transactions, which may be affected by clock drift and 
malicious delay attacks. Clock drift may lead to 
inaccurate lock times, while malicious delay attacks 
exploit network delays to manipulate the execution order 
of cross-chain transactions. Wu Di [131] proposed 
defense methods against hash lock transfer delay attacks, 
relay cross-chain routing attacks, and relay chain block 
blocking attacks, which to a certain extent strengthened 
the security regulation of cross-chain systems. First, to 
prevent hash lock transfer delay attacks, the time 
difference can be increased. By increasing the time 
difference between the Fabric end and the ETH end, the 
difficulty for attackers to maliciously wait and block the 
network can be increased. Then, three protection 
methods can be adopted to deal with relay cross-chain 
routing attacks: application chain whitelist, application 
chain balance query, and application chain creation time 
query. Finally, by comprehensively using two methods: 
setting connection count scripts and modifying the 
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gateway’s request processing order, relay chain block 
blocking attacks can be effectively prevented. 

2.3 Off-chain Regulation 

Off-chain regulation refers to regulators regulating and 
managing regulated chains through off-chain 
mechanisms, including community discussions, voting, 
negotiations, off-chain governance, committee 
decisions, and other methods. However, off-chain 
regulation has problems such as insufficient 
participation, abuse of power, and lack of transparency 
[132-133], which need to be solved through effective 
mechanisms and rules. 

The Ethereum The DAO incident [134] and the Bitcoin 
block size debate [135] are two typical off-chain 
regulatory events. The Ethereum The DAO incident 
involved the security and governance issues of Ethereum 
smart contracts. Finally, the Ethereum community 
decided to hard fork the Ethereum blockchain through 
off-chain discussions and voting to recover stolen assets 
and maintain the stability of the Ethereum network. The 
Bitcoin block size debate lasted for several years, 
involving important matters such as Bitcoin network 
protocol updates and capacity expansion. However, the 
final decision was made by a few developers and miners 
through off-chain negotiations and voting, and most 
Bitcoin users did not participate in or understand this 
process. This lack of transparency and insufficient 
participation in regulation reflects some problems and 
limitations of off-chain regulation, and also triggers 
discussions and attempts at off-chain regulation. For 
example, the block node election protocol Whisk 
proposed by the Ethereum Open Research Forum 
Ethresearch was discussed and designed by multiple 
community members rather than official Ethereum 
personnel. 

In practice, a combination of on-chain and off-chain 
regulation can achieve better regulatory and community 
governance effects. EOS [136] is a blockchain project 
based on the delegated proof of stake (DPoS) consensus 
algorithm, and its community governance mechanism 
adopts a combination of on-chain and off-chain 
regulation. Off-chain regulation includes community 
discussions, voting, and negotiations, while on-chain 
regulation is implemented through smart contracts. 
Miyachi et al. [137] proposed a modular hybrid privacy-
preserving framework for enhancing medical 
information management, combining on-chain and off-
chain regulation to design a reference model. It mainly 
realizes the interaction between on-chain and off-chain 
resources through a distributed software architecture, 
thereby realizing privacy management of different types 
of medical data. 

3. FUTURE OUTLOOK OF BLOCKCHAIN 

REGULATION 

From the analysis and summary of the three categories 
of blockchain regulatory technologies in Section 3, it can 
be seen that there are four common problems in current 
blockchain regulation. 

1. Difficulty in Data Association Analysis Blockchain 
transaction data is stored in a distributed network. Due 
to the decentralization and anonymity of blockchain 
transactions, it is difficult for regulators to track the true 
identity of transaction participants. For example, on 
privacy public chains such as Monero, Dash, and Zcash, 
the identities of transaction participants and transaction 
details are not public, making it difficult for regulators to 
obtain complete transaction information, thereby making 
it difficult to discover and punish violations. It is difficult 
to regulate illegal transactions and behaviors in these 
blockchain networks. 

A possible solution is to break through the association of 
chain group entities and anonymous digital identity 
recognition technologies, build a three-in-one associated 
regulation of blockchain entities-data-chain groups, and 
integrate machine learning to extract features of non-
anonymous data such as network layer traffic data, and 
train targeted regulatory large language models. 
However, the security of the unique algorithms of large 
language models in blockchain security regulation also 
needs to be considered to ensure the security of the 
regulatory technology itself. A typical attack method 
against large language models is command injection. 
Attackers can construct inputs cleverly to make the 
model perform unexpected behaviors. If the blockchain 
regulatory interface based on large language models is 
abused, even with input specifications, attackers may 
still use command injection to exploit the authority of the 
regulatory interface, causing damage or interfering with 
the normal operation of the regulated blockchain 
application. 

2.Insufficient Consideration of Business Compliance 
Regulation Existing regulatory schemes tend to use 
technical means to regulate a specific vulnerability or 
risk, ignoring the compliance and security risks of the 
regulatory target business itself, which may lead to 
regulatory loopholes. Existing regulatory methods and 
technologies [80-81, 84, 113] are generally less versatile. 
It should be considered to regulate on-chain business and 
security vulnerability risks collaboratively, and design 
specialized regulatory schemes or systems for business 
and technical risks respectively. 

3.Low Cross-chain Collaboration Regulation Capability 
Blockchain cross-chain protocols have matured, and 
various cross-chain projects have emerged. Cross-chain 
is no longer limited to involving only two blockchains, 
but has evolved into complex cross-chain scenarios with 
multi-chain collaborative interconnection represented by 
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Polkadot. In this regard, corresponding blockchain 
regulatory research is not yet deep and sufficient. It is 
necessary to consider establishing cross-chain regulatory 
interoperability mechanisms [139] or multi-chain 
collaborative regulatory mechanisms, such as using 
Polkadot’s parachain auction mechanism to embed 
regulatory logic into the obtained parachains, and 
regulating blockchain applications connected to the 
parachains. 

4.High Regulatory Cost Since the operation of 
regulatory schemes or systems requires continuous 
external investment of resources, regulatory costs will 
only increase, and it is impossible to achieve self-
sustaining regulation. For example, node detection and 
attack detection technologies require long-term 
maintenance of necessary network facilities or 
deployment of nodes to collect blockchain P2P layer 
traffic. Abnormal transaction analysis and smart contract 
security require a large amount of computing resources 
to train the necessary machine learning models to 
complete detection or identification. Node tracking 
technology requires a large amount of data analysis. 
Penetration regulation requires a large amount of 
software resources to meet regulatory requirements. 

A possible way to balance regulatory costs is for 
blockchain regulators, as members of the blockchain 
community, to propose and vote on matters as members 
of decentralized autonomous organizations. The benefits 
generated by these processes can be used to reduce 
regulatory costs. Therefore, whether it is possible to 
quantify and model regulatory effectiveness and 
regulatory benefits using game theory based on the 
blockchain ecosystem model and regulatory costs, 
thereby further analyzing the specific role of regulation 
in the development of the blockchain ecosystem, is a 
direction that needs to be explored. 

With the in-depth development of blockchain 
technology, various Rollup [140] projects aimed at 
solving the scalability problems of existing public chains 
have emerged, such as Arbitrum [141], Optimism [142], 
etc., as well as high-performance public chains adopting 
new accounting structures or sharding, such as Kaspa 
[143], Near [144], etc. The applicability of traditional 
regulatory technologies to them needs to be further 
tested. In addition, the emergence of decentralized 
exchanges has promoted the prosperity of the 
decentralized finance ecosystem, and the regulation of 
decentralized exchanges will be a key area of blockchain 
security regulation.  

For the regulation of these emerging blockchain projects, 
feasible regulatory measures are as follows: 

A. Regulation should consider using decentralized 
autonomous organizations to achieve regulation. For 
example, the decentralized communities of 
permissionless chains themselves have governance 
rights and voting rights for projects. These communities 

have low participation thresholds and are a major 
effective way of regulation. 

B. The scope of regulation should be extended to various 
Rollup solutions and DeFi projects, and targeted 
regulation should be carried out according to their 
underlying implementation mechanisms, thereby 
increasing the coverage of regulation. 

C. Attention should be paid to the new Bitcoin ecosystem 
and targeted regulation should be carried out. Recently, 
inscription ecosystems represented by Ordinals and Sats, 
rune ecosystems represented by Runes, and Bitcoin 
smart contract virtual machines have emerged. In the 
future, regulators should pay attention to these emerging 
blockchain projects. 

4. CONCLUSION 

The rapid development of blockchain has brought 
increasingly serious security issues, making blockchain 
security regulation a key research area. This paper 
analyzes and summarizes the current state of the 
blockchain ecosystem and briefly explains the domestic 
and international policy background of blockchain 
regulation. Based on the characteristics of current 
blockchain technology and its applications, it provides a 
three-layer division of intra-chain infrastructure, cross-
chain expansion, and off-chain decentralized 
autonomous communities and applications. Based on 
this division, existing regulatory technologies and 
schemes are summarized and systematically analyzed 
and compared from three aspects: intra-chain regulation, 
inter-chain regulation, and off-chain regulation. The 
paper focuses on discussing relevant literature on 
infrastructure layer, core function layer, and user layer 
regulation within intra-chain regulation and compares 
their characteristics. It briefly discusses representative 
schemes for inter-chain and off-chain regulation, and 
finally summarizes and compares the three regulatory 
schemes: intra-chain, inter-chain, and off-chain. It also 
points out common problems in current blockchain 
security regulation, possible improvement directions, 
and emerging blockchain projects that regulators should 
pay attention to in the future. 
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ABSTRACT 
Federated Learning (FL) has emerged as a groundbreaking distributed machine learning paradigm that enables 

collaborative model training while preserving data privacy. This comprehensive review examines FL's evolution 

from its inception to current state-of-the-art approaches, addressing both theoretical foundations and practical 

applications. We analyze the core FL framework, highlighting its advantages over centralized learning in terms 

of privacy preservation, reduced communication overhead, and edge computing capabilities. The paper explores 

key algorithmic advancements including Federated Averaging (FedAvg) and its variants (FedProx, SCAFFOLD), 

which tackle challenges like data heterogeneity and client drift. We discuss FL's transformative applications across 

healthcare, finance, and IoT domains, where data privacy is paramount. Major challenges are critically examined, 

including communication bottlenecks, straggler effects, security vulnerabilities, and the complexities of non-IID 

data distributions. The review evaluates privacy-enhancing technologies such as differential privacy and 

homomorphic encryption, analyzing their trade-offs between privacy guarantees and model performance. Looking 

forward, we identify promising research directions: adaptive personalization techniques, integration with large 

language models, blockchain-assisted security frameworks, and standardization efforts for broader adoption. 

Ethical considerations and regulatory compliance aspects are also addressed, providing a holistic perspective on 

FL's role in shaping responsible AI development. This review serves as both a technical reference and a roadmap 

for future innovation in federated learning systems. 

Keywords: Federated Learning, Privacy-Preserving AI, Edge Computing, Decentralized Optimization 

1. INTRODUCTION 
 The proliferation of data in the modern 

digital landscape, coupled with an escalating global 

emphasis on data privacy, has presented traditional 

machine learning paradigms with formidable 

challenges. Conventional approaches often 

necessitate the aggregation of vast datasets in 

centralized repositories to train robust and accurate 

models. This centralized model, however, is 

increasingly constrained by stringent privacy 

regulations, such as GDPR and CCPA, which 

mandate strict control over personal data[22]. 

Furthermore, the centralized storage of massive 

datasets introduces inherent risks, including 

potential data breaches, corruption, loss, and 

significant storage and management overheads. 

These limitations underscore the urgent need for 

innovative machine learning methodologies that can 

circumvent the pitfalls of data centralization while 

still harnessing the collective intelligence embedded 

within distributed datasets. 

In response to these pressing concerns, Federated 

Learning (FL) has emerged as a transformative 

paradigm. Conceived by Google in 2016, FL is a 

decentralized and collaborative machine learning 

approach that enables multiple entities to jointly 

train a shared global model without exchanging their 

raw, sensitive data. Instead of data moving to the 

computation, computation moves to the data. This 

fundamental shift ensures that private data remains 

localized on individual devices or institutional 

servers, thereby upholding stringent privacy 

standards and mitigating the risks associated with 
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centralized data collection. The core principle of FL 

lies in its iterative process: a central server 

orchestrates the training, distributing a global model 

to participating clients. Each client then trains this 

model on its local dataset, computes model updates 

(e.g., gradients or model parameters), and securely 

transmits only these updates back to the central 

server. The server then aggregates these updates to 

refine the global model, which is subsequently 

redistributed for another round of local training. 

This cycle continues until the model converges or a 

predefined performance threshold is met[1]. 

The advantages of federated learning extend beyond 

privacy preservation. It effectively addresses the 

challenge of data silos, where valuable data is 

fragmented across various organizations or devices 

and cannot be easily combined due to regulatory, 

competitive, or logistical barriers. By enabling 

collaborative model training on these disparate 

datasets, FL unlocks new opportunities for 

knowledge discovery and model improvement that 

would otherwise be unattainable. Moreover, FL 

leverages the computational resources at the edge, 

reducing the need for extensive cloud infrastructure 

and minimizing communication bandwidth, 

especially when dealing with large datasets. This 

distributed nature also enhances system robustness, 

as the failure of a single client does not cripple the 

entire training process[5]. 

Federated learning has rapidly found diverse 

applications across a multitude of sectors. In 

healthcare, it facilitates the development of 

advanced diagnostic models by allowing hospitals to 

collaboratively train on patient data without 

compromising individual privacy, leading to more 

accurate disease detection and personalized 

treatment plans[3]. The financial industry utilizes 

FL for fraud detection and risk assessment, enabling 

banks to share insights from their transaction data 

while maintaining customer confidentiality[2]. In 

the realm of recommendation systems, platforms 

can offer highly personalized content suggestions by 

learning from user interactions directly on devices, 

without centralizing sensitive user behavior data[4]. 

Furthermore, FL is pivotal in advancing smart city 

initiatives, autonomous vehicles, and the Internet of 

Things (IoT), where it enables intelligent decision-

making at the edge, optimizing resource allocation 

and enhancing operational efficiency[6, 27]. This 

paper aims to provide a comprehensive review of 

federated learning, delving into its foundational 

concepts, evolutionary trajectory, the critical 

challenges it currently faces, and its promising 

future directions. By offering an in-depth analysis, 

this review seeks to equip researchers and 

practitioners with a nuanced understanding of FL's 

principles and its potential to reshape the landscape 

of privacy-preserving artificial intelligence. 

  

2. FEDERATED LEARNING OVERVIEW 
 At its core, federated learning operates on a 

collaborative yet decentralized principle, 

fundamentally altering the traditional machine 

learning paradigm. The process is typically 

orchestrated by a central coordinating server, which 

initiates the learning cycle by distributing an initial 

or current version of a global model to a multitude 

of participating client devices. These clients, which 

can range from mobile phones and wearable devices 

to institutional servers and IoT sensors, then 

undertake the crucial task of local model training. 

Each client leverages its proprietary, local dataset—
data that never leaves the device—to refine the 

received model. This local training phase involves 

computing model updates, such as gradients or 

updated model parameters, based on the client's 

unique data distribution. 

Upon completion of local training, instead of 

transmitting their raw data, clients securely send 

only these computed model updates back to the 

central server. The server then performs an 

aggregation step, combining the updates received 

from all participating clients to produce a refined 

global model. This aggregation process is designed 

to synthesize the collective knowledge gained from 

the distributed datasets while preserving the privacy 

of individual data points. Once the global model is 

updated, it is redistributed to the clients for the next 

round of local training, and this iterative cycle 

continues until the model converges to a satisfactory 

performance level or a predefined number of 

communication rounds are completed. This iterative 

exchange of model updates, rather than raw data, is 

the cornerstone of federated learning's privacy-

preserving capabilities. 

Key Distinctions from Traditional Distributed 

Learning 

While federated learning is a form of distributed 

machine learning, it possesses several critical 

distinctions that set it apart from conventional 

distributed training approaches: 

1.  Emphasis on Privacy Preservation : The most 

salient difference lies in the paramount importance 

placed on privacy. In federated learning, client 

devices retain absolute control and ownership over 

their private data. The central server, acting solely as 

an orchestrator, neither collects nor stores any raw 

client data. This contrasts sharply with traditional 

distributed machine learning, where a central node 

or cluster typically manages and has full access to 

all partitioned data across the distributed system. In 

such traditional setups, data  is often sharded 

and distributed to worker nodes, but the central 

authority still maintains a comprehensive view and 

control over the entire dataset. 

2.  Heterogeneity and Inclusivity of Client Devices : 

Federated learning is designed to accommodate a 

wide spectrum of client devices, each potentially 

possessing varying computational capabilities, 
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storage capacities, network bandwidths, and data 

volumes. This high degree of inclusivity means that 

participants can include resource-constrained 

mobile devices, smart home appliances, industrial 

sensors, or even diverse organizational servers. 

Traditional distributed machine learning 

environments, conversely, are typically deployed in 

more homogeneous and controlled settings, such as 

data centers or high-performance computing 

clusters. In these environments, worker nodes are 

generally uniform in their computational power and 

resources, ensuring predictable performance and 

easier management. 

3.  Addressing Distinct Challenges : Federated 

learning extends the foundational framework of 

distributed systems to tackle challenges primarily 

related to data privacy, data silos, and efficient 

utilization of edge computing resources. Its focus is 

on enabling collaborative model training when data 

cannot be centralized due to privacy concerns, 

regulatory restrictions, or logistical complexities. 

Traditional distributed machine learning, on the 

other hand, primarily aims to enhance computational 

efficiency and scalability in big data scenarios. Its 

objective is to accelerate model training and reduce 

time costs by parallelizing tasks and distributing 

data across multiple nodes, assuming data can be 

freely moved and aggregated. 

4.  Data Distribution Characteristics : In an ideal 

traditional distributed learning setting, data is often 

assumed to be independently and identically 

distributed (IID) across all nodes, or at least 

carefully partitioned to approximate IID conditions. 

Federated learning, however, inherently deals with 

non-IID data distributions. Each client's local 

dataset reflects its unique usage patterns, 

demographics, or environmental factors, leading to 

statistical heterogeneity across clients. This non-IID 

nature poses significant algorithmic challenges for 

model convergence and generalization, which FL 

algorithms must explicitly address. 

These distinctions highlight federated learning's 

unique position as a privacy-preserving, distributed 

machine learning paradigm tailored for real-world 

scenarios where data is decentralized, 

heterogeneous, and sensitive. Its architectural 

flexibility and inherent privacy features make it a 

compelling solution for a growing number of 

applications across diverse industries. 

 

3. DEVELOPMENT OF FEDERATED 

LEARNING 
The genesis of federated learning can be traced back 

to 2016, when researchers at Google first introduced 

the concept [1]. Their seminal work laid the 

groundwork for a novel approach to machine 

learning that allowed models to be trained on 

decentralized client data without the necessity of 

transmitting raw data to a central server, thereby 

safeguarding user privacy [24]. The Federated 

Averaging (FedAvg) algorithm, proposed in this 

foundational paper, quickly became the most widely 

adopted method in federated learning. In FedAvg, 

the central server's role is simplified to merely 

aggregating the model parameters (e.g., weights and 

biases of a neural network) uploaded by 

participating client devices, typically by computing 

their weighted average. This design elegantly 

bypasses the need for the central server to engage in 

direct model training or data management, 

significantly enhancing privacy. 

However, the real-world deployment of federated 

learning soon revealed a critical challenge: the non-

independent and identically distributed (non-IID) 

nature of client data. Unlike controlled laboratory 

settings where data can often be assumed to be IID, 

data generated by diverse client devices in 

heterogeneous environments is inherently non-IID. 

This statistical heterogeneity can lead to significant 

performance degradation and unstable model 

convergence in vanilla FedAvg. In response, a wave 

of research has focused on developing more robust 

and efficient aggregation strategies and local 

optimization techniques to mitigate the adverse 

effects of non-IID data. For instance, FedProx [7] 

introduced a proximal term to the local objective 

function, penalizing deviations between the local 

model and the global model. This regularization 

helps to stabilize training and improve convergence 

in non-IID settings by encouraging local models to 

stay closer to the global consensus. Similarly, 

SCAFFOLD [8] proposed a novel control variate 

approach to correct for client drift caused by local 

data heterogeneity, aiming to ensure that local 

updates are more aligned with the global objective. 

FedDyn [9] further advanced this by incorporating 

dynamic regularization based on historical model 

updates, providing a more adaptive mechanism to 

manage the bias introduced by non-IID data, rather 

than relying solely on the current model state. 

Another significant evolutionary step in federated 

learning is the emergence of personalized federated 

learning [10]. Recognizing that a single global 

model might not optimally serve all diverse clients, 

personalized FL aims to tailor models to individual 

client needs while still benefiting from collaborative 

learning. This approach seeks a balance between 

global generalization and local specialization. 

Various strategies have been explored to achieve 

personalization. For example, LG-FedAvg [11] 

proposed a method where the top layers of a model 

are treated as shared parameters, while the bottom 

layers are personalized, allowing for both global 

knowledge transfer and local adaptation. FedRod 

[12] introduced the concept of maintaining a private 

personalized classifier on each client in addition to 

sharing the entire private model, enabling more 

nuanced personalization. FedBABU [13] explored a 

phased approach, where clients continuously update 
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and share the bottom-layer parameters of their 

private models in the initial stages, followed by fine-

tuning the top layers to acquire personalized models 

later. Personalized federated learning represents a 

crucial advancement, as it not only facilitates the 

training of models highly adapted to individual data 

distributions but also maintains the integrity and 

benefits of global federated optimization. 

The rapid advancements in deep learning and the 

advent of large-scale models have also spurred 

interest in federated learning for large models [14]. 

Training massive models, such as large language 

models or vision transformers, typically requires 

immense computational resources and vast datasets, 

often centralized. Federated learning offers a 

compelling alternative by enabling the collaborative 

training of these large models across distributed 

edge devices, potentially leveraging their collective 

data without centralizing it. This area of research is 

still nascent but holds immense promise for 

democratizing access to powerful AI models and 

enabling their deployment in privacy-sensitive 

environments. Furthermore, the integration of 

federated learning with blockchain technology [15] 

has gained traction. Blockchain can provide a 

decentralized, immutable, and transparent ledger for 

recording model updates and client contributions, 

thereby enhancing the security, trustworthiness, and 

traceability of federated learning processes. This 

synergy can further bolster privacy protection and 

provide verifiable audit trails, addressing concerns 

about data integrity and malicious participants in FL 

ecosystems. 

4. CURRENT CHALLENGES IN 

FEDERATED LEARNING 
Despite its significant advantages and rapid 

advancements, federated learning is not without its 

inherent challenges. These obstacles often stem 

from the decentralized nature of the paradigm and 

the complexities of real-world data distributions and 

network environments. Addressing these challenges 

is crucial for the widespread adoption and robust 

performance of federated learning systems. 

4.1. Data Heterogeneity (Non-IID Data) 

One of the most pervasive and challenging issues in 

federated learning is data heterogeneity, often 

referred to as the non-independent and identically 

distributed (non-IID) nature of client data. In an 

idealized federated learning scenario, where data 

across all participating clients is IID, classical 

federated learning algorithms like FedAvg can 

achieve excellent model performance and rapid 

convergence. However, in practical applications, 

client data is rarely IID. Each client's local dataset is 

typically generated from its unique environment, 

user behavior, or demographic characteristics, 

leading to significant statistical differences in data 

distributions across clients. This non-IID 

characteristic manifests in several ways: 

·  Feature Distribution Skew : Different clients may 

have data with varying feature distributions. For 

example, in a medical imaging task, one hospital 

might have a higher prevalence of a certain disease 

compared to another. 

·  Label Distribution Skew : Clients might have 

different distributions of labels. A mobile phone 

user might primarily interact with certain 

applications, leading to a skewed distribution of app 

usage data. 

·  Quantity Skew : The amount of data available on 

each client can vary significantly, with some clients 

possessing vast datasets and others having very 

limited data. 

·  Concept Drift : The underlying data distribution 

on a client might change over time, leading to a 

dynamic non-IID scenario. 

This data heterogeneity poses a severe challenge to 

model convergence and generalization. When 

clients train on vastly different local data 

distributions, their local model updates can pull the 

global model in conflicting directions, leading to 

slow convergence, oscillations, or even divergence. 

The aggregated global model may struggle to 

perform well across all clients, particularly on those 

with minority data distributions. To counteract these 

issues, researchers have explored various strategies. 

Customizing personalized parameters, as seen in 

personalized federated learning approaches, aims to 

allow each client to adapt the global model to its 

local data characteristics. Another promising 

direction is knowledge distillation, where a global 

model distills knowledge to local models or vice 

versa, enabling efficient transfer of information 

while respecting data privacy. However, both 

personalized models and knowledge distillation 

often introduce additional computational overhead, 

requiring more complex algorithms and potentially 

longer training times, which can be a significant 

concern for resource-constrained edge devices. 

4.2. Straggler Effect and Client Selection 

The assumption of global participation, where all 

clients contribute to every round of federated 

learning, is often unrealistic in real-world 

deployments. The straggler effect, a prominent 

challenge in federated learning, arises from the 

inherent heterogeneity of client devices in terms of 

hardware capabilities, network bandwidth, and data 

volume. These disparities can significantly impact 

the efficiency and convergence of the federated 

training process. 

Specifically: 

·  Hardware Differences : Clients possess diverse 

computational powers, ranging from high-end 

servers in cross-silo FL to low-power mobile 

devices in cross-device FL. This leads to varying 

local training speeds, with slower devices becoming 

bottlenecks. 

·  Network Bandwidth and Latency : The efficiency 

of model download from and upload to the central 
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server is heavily dependent on the client's network 

connectivity. Clients with poor or intermittent 

network connections can delay the aggregation 

process. 

·  Data Volume Differences : Clients with larger 

datasets require more computational resources and 

time for local model updates compared to those with 

smaller datasets. This can lead to inconsistent 

convergence rates among private models. 

These less efficient client devices are termed 

'stragglers.' Their delayed participation or failure to 

complete local training within a given timeframe can 

severely disrupt the model aggregation process at 

the central server, impacting both the speed and 

quality of the global model. If the central server 

waits for all clients, the overall training time can be 

significantly prolonged, negating the benefits of 

distributed computation. If it proceeds without 

stragglers, the aggregated model might be biased or 

less representative of the overall data distribution. 

To address the straggler effect, various strategies 

have been proposed. Asynchronous update 

strategies, where the central server does not wait for 

all clients to complete their local training before 

aggregation, can mitigate delays. However, purely 

asynchronous approaches can lead to issues like 

model staleness, where updates from slower clients 

arrive too late to be fully relevant to the current 

global model state. Other approaches involve 

sophisticated client selection mechanisms, where 

the central server strategically chooses a subset of 

clients for each training round based on factors like 

their computational resources, network conditions, 

data quality, or even their historical reliability. 

While these methods can improve efficiency, they 

introduce complexity and may not always maximize 

the overall benefit, potentially leading to biases if 

certain client data distributions are consistently 

underrepresented. 

4.3. Privacy Protection and Security 

While federated learning is inherently designed with 

privacy in mind, it is not impervious to privacy 

breaches or security threats. The very act of sharing 

model updates, even without raw data, can 

inadvertently leak sensitive information [26]. The 

primary mechanisms for privacy protection in 

federated learning include: 

1.  Inherent Design Advantage : The foundational 

principle of FL—that raw data never leaves the 

client device—is its first and most significant 

privacy safeguard. The central server only receives 

aggregated model updates, not individual data 

points. 

2.  Differential Privacy (DP) : Differential privacy is 

a rigorous mathematical framework that provides 

strong privacy guarantees by introducing carefully 

calibrated noise into the model updates before they 

are sent to the central server [18]. This noise makes 

it statistically difficult for an adversary to infer 

information about any single individual's data from 

the aggregated updates. While highly effective, 

implementing differential privacy often comes with 

a trade-off: the added noise can reduce the accuracy 

of the trained model, and determining the optimal 

level of noise is a critical challenge. 

3.  Homomorphic Encryption (HE) : Homomorphic 

encryption allows computations to be performed on 

encrypted data without decrypting it [19]. In 

federated learning, this means that clients can 

encrypt their model updates before sending them to 

the server, and the server can aggregate these 

encrypted updates without ever seeing the 

unencrypted values. Only the final aggregated 

model, or specific results, are decrypted. 

Homomorphic encryption offers a very high level of 

privacy, but its main drawback is the significant 

computational and communication overhead it 

introduces, making it resource-intensive for many 

practical FL deployments, especially on edge 

devices. 

Beyond these primary privacy-enhancing 

technologies, federated learning systems are also 

vulnerable to various security threats, including: 

·  Model Poisoning Attacks : Malicious clients can 

intentionally send corrupted or adversarial model 

updates to the central server, aiming to degrade the 

global model's performance or introduce backdoors. 

·  Data Poisoning Attacks : Although raw data is not 

shared, an attacker might inject malicious data into 

their local dataset to influence the training process. 

·  Inference Attacks : Even with privacy 

mechanisms, sophisticated adversaries might 

attempt to infer sensitive information about 

individual clients or their data by analyzing the 

shared model updates or the global model itself. This 

includes membership inference attacks (determining 

if a specific data point was part of the training set) 

and property inference attacks (inferring properties 

of the training data). 

·  Sybil Attacks : An attacker might create multiple 

fake client identities to gain disproportionate 

influence over the global model. 

Addressing these privacy and security challenges 

requires a multi-faceted approach, often combining 

cryptographic techniques, differential privacy, 

secure multi-party computation (SMC), and robust 

aggregation algorithms. The ongoing research in this 

area focuses on developing more efficient and 

lightweight privacy-preserving strategies that can be 

deployed on resource-constrained client devices 

without significantly compromising model utility or 

incurring excessive computational and 

communication costs. The balance between privacy, 

utility, and efficiency remains a central research 

problem in federated learning. 
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5. FUTURE OUTLOOK OF FEDERATED 

LEARNING 

Federated learning is a rapidly evolving field with 

immense potential to reshape how machine learning 

models are developed and deployed, particularly in 

privacy-sensitive and data-rich environments. As 

the technology matures, several key areas are poised 

for significant advancements and research focus. 

5.1. Personalized Federated Learning 

The concept of personalized federated learning has 

already demonstrated considerable effectiveness in 

bridging the gap between a single global model and 

the diverse needs of individual clients. While current 

research often assumes a homogeneous model 

structure across all global client devices, the future 

of personalized FL lies in pushing this adaptability 

further. This involves developing strategies that can 

dynamically and adaptively match appropriate 

model architectures and learning paradigms to the 

unique conditions and data characteristics of each 

client device. A critical challenge in this pursuit is 

designing mechanisms for the central server to 

effectively integrate updates from heterogeneous 

models, where clients might be training different 

model types or architectures. This could involve 

meta-learning approaches, multi-task learning, or 

advanced knowledge transfer techniques that can 

distill insights from diverse local models into a 

coherent global representation. 

Furthermore, the development of active adjustment 

strategies for client devices is a promising avenue. 

Instead of passively receiving global model 

updates, clients could autonomously adjust their 

local hyperparameters, learning rates, or even 

model architectures based on their historical 

training performance, data drift, or specific task 

requirements. This would empower clients to 

optimize their local learning processes more 

effectively, leading to faster convergence, 

improved local model performance, and better 

overall resource utilization within the federated 

ecosystem. Research into reinforcement learning or 

adaptive control mechanisms for client-side 

optimization could play a pivotal role in realizing 

this vision. 

5.2. Federated Learning and Large Models 

The recent explosion in the scale and capabilities of 

large models, such as large language models 

(LLMs) and foundation models, has ignited 

significant interest in integrating them within the 

federated learning framework. Superficially, large 

models and federated learning appear to have 

conflicting philosophies: FL advocates for 

lightweight models to minimize computational, 

storage, and communication overhead on edge 

devices, whereas large models inherently rely on 

massive architectures and billions of parameters to 

process and understand high-dimensional data. 

However, the synergy between these two fields 

holds transformative potential. 

One promising direction involves using federated 

learning for information integration, where a central 

large model acts as a powerful aggregator and 

knowledge refiner. In this scenario, edge devices 

could perform initial data processing or train 

smaller, specialized models locally. The insights or 

distilled knowledge from these local models would 

then be transmitted to a central large model, which 

would perform high-level information extraction, 

learning, and generalization. Subsequently, this 

central large model could generate more efficient, 

lightweight models through techniques like 

knowledge distillation, which are then deployed 

back to the edge devices. This approach leverages 

the strengths of both: the privacy-preserving and 

distributed nature of FL for data access, and the 

powerful generalization capabilities of large models 

for complex pattern recognition and knowledge 

synthesis. 

Another critical area of research is enabling the 

training of large models directly on resource-

constrained client devices within a federated setting. 

This necessitates significant advancements in model 

compression techniques, including pruning, 

quantization, and distillation. By drastically 

reducing the size and computational footprint of 

large models, it becomes feasible to train them on 

edge devices. Federated learning would then 

facilitate the collaborative aggregation of updates 

from these compressed local models, enabling the 

collective intelligence of distributed data to 

contribute to the development of powerful, yet 

deployable, large models. This could unlock 

unprecedented opportunities for on-device AI, 

personalized large language models, and efficient 

deployment of advanced AI capabilities in privacy-

sensitive edge environments. 

6. DISCUSSION 

Federated learning, while offering a compelling 

solution to privacy concerns and data silo 

challenges, is still a nascent field with numerous 

avenues for deeper exploration and refinement. The 

discussions surrounding its practical deployment 

often revolve around the delicate balance between 

privacy, model utility, communication efficiency, 

and computational feasibility across heterogeneous 

client environments. The inherent non-IID nature of 

data in real-world FL scenarios remains a central 

point of contention and active research. While 

personalized FL approaches and advanced 

aggregation techniques have shown promise in 

mitigating the negative impacts of data 

heterogeneity, the optimal strategies often depend 

on the specific application domain and the degree of 

data divergence among clients. Further research is 

needed to develop adaptive algorithms that can 
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dynamically adjust to varying levels of non-IIDness 

and provide robust performance guarantees. 

The straggler effect, stemming from the diverse 

computational and network capabilities of 

participating devices, poses a significant hurdle to 

the efficiency and scalability of FL systems. While 

asynchronous update mechanisms and intelligent 

client selection strategies offer partial solutions, they 

often introduce new complexities, such as model 

staleness or potential biases in client representation. 

Future discussions will likely focus on more 

sophisticated resource management techniques, 

perhaps incorporating predictive models to 

anticipate and mitigate straggler behavior, or 

developing incentive mechanisms to encourage 

consistent participation from all clients. The trade-

offs between system responsiveness and model 

convergence in the presence of stragglers will 

continue to be a critical area of investigation. 

Privacy and security, though foundational to FL, are 

not fully resolved challenges. The vulnerability of 

FL systems to various attacks, including model 

poisoning, data inference, and Sybil attacks, 

necessitates continuous innovation in defense 

mechanisms. While differential privacy and 

homomorphic encryption provide strong theoretical 

guarantees, their practical implementation often 

comes with significant computational overhead or a 

reduction in model accuracy. The discussion needs 

to shift towards developing more lightweight, 

efficient, and composable privacy-preserving 

techniques that can be seamlessly integrated into 

diverse FL architectures without compromising 

utility. Furthermore, the development of robust 

auditing and verification mechanisms to ensure the 

integrity and trustworthiness of aggregated models 

will be paramount for building confidence in FL 

systems, especially in highly regulated industries. 

Beyond these technical challenges, the broader 

implications of federated learning on data 

governance, regulatory frameworks, and ethical 

considerations warrant extensive discussion. As FL 

becomes more prevalent, questions regarding data 

ownership, accountability for model biases, and the 

potential for misuse of aggregated intelligence will 

become increasingly important. Establishing clear 

legal and ethical guidelines for the deployment of 

FL systems will be crucial for fostering public trust 

and ensuring responsible innovation. The 

interdisciplinary nature of these challenges 

underscores the need for collaboration among 

machine learning researchers, cryptographers, legal 

experts, and policymakers to collectively shape the 

future of privacy-preserving AI. 

6.1. Ethical Considerations and Regulatory 

Landscape 

Beyond the technical intricacies, the widespread 

adoption of federated learning introduces a complex 

array of ethical considerations and necessitates a 

robust regulatory framework. While FL inherently 

addresses privacy by keeping raw data localized, it 

does not automatically resolve all ethical dilemmas. 

For instance, questions arise regarding algorithmic 

fairness and bias. If the training data on participating 

clients is inherently biased, the aggregated global 

model can perpetuate and even amplify these biases, 

leading to discriminatory outcomes, particularly in 

sensitive applications like healthcare or finance. 

Ensuring fairness across diverse client populations, 

especially when data distributions are non-IID, is a 

critical ethical challenge that requires proactive 

measures, such as fairness-aware aggregation 

algorithms and rigorous auditing mechanisms [20]. 

Another ethical concern revolves around 

accountability. In a decentralized training paradigm, 

pinpointing responsibility for model errors, biases, 

or privacy breaches becomes significantly more 

complex. Who is accountable when a federated 

model makes a harmful decision: the central 

orchestrator, the contributing clients, or a 

combination thereof? Clear guidelines and legal 

frameworks are needed to delineate responsibilities 

and establish mechanisms for redress. Furthermore, 

the potential for malicious actors to inject poisoned 

data or model updates, even with privacy-preserving 

techniques, raises questions about the 

trustworthiness of the aggregated model and the 

need for robust verification processes [21]. 

The evolving regulatory landscape, driven by 

privacy-centric legislations like GDPR in Europe 

and CCPA in California, significantly influences the 

development and deployment of FL. Federated 

learning is often seen as a promising tool for 

compliance with these regulations, as it minimizes 

data transfer and central storage. However, the 

nuances of FL, such as the potential for inference 

attacks or the aggregation of sensitive model 

updates, mean that mere adoption of FL does not 

guarantee full compliance [25]. Regulators and 

policymakers are increasingly grappling with how to 

adapt existing data protection laws to the unique 

characteristics of FL, particularly concerning data 

ownership, consent mechanisms for model training, 

and the right to be forgotten in a distributed learning 

context. The development of standardized protocols 

and best practices for FL deployment, alongside 

clear legal interpretations, will be crucial for 

fostering trust and accelerating its responsible 

integration into various industries [22]. 

 

6.2. Interoperability and Standardization 

The current federated learning ecosystem is 

characterized by a proliferation of diverse 

frameworks, algorithms, and deployment strategies, 

leading to significant challenges in interoperability 

and standardization. Different research groups and 

companies often develop their own proprietary or 

open-source FL platforms, each with unique APIs, 

data formats, and communication protocols. This 

fragmentation hinders the seamless integration of 
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FL solutions across different organizations and 

limits the ability to benchmark and compare the 

performance of various FL algorithms effectively. 

The lack of universal standards makes it difficult for 

new entrants to adopt FL, increases development 

costs, and impedes the creation of a truly 

collaborative and scalable FL ecosystem. 

Standardization efforts are crucial to address these 

issues. This includes developing common data 

exchange formats, standardized communication 

protocols for model updates, and unified APIs for 

interacting with FL platforms. Such standards would 

facilitate the creation of modular and interoperable 

FL components, allowing researchers and 

practitioners to easily combine different algorithms, 

privacy-preserving techniques, and hardware 

configurations. Furthermore, the establishment of 

standardized benchmarking datasets and evaluation 

metrics, particularly for non-IID scenarios and 

adversarial attacks, is essential for objectively 

assessing the performance and robustness of FL 

systems. Collaborative initiatives involving 

academia, industry, and regulatory bodies are 

necessary to drive these standardization efforts, 

ensuring that federated learning can evolve into a 

mature and widely adopted technology with a robust 

and interconnected ecosystem [23]. 

7. OPEN ISSUES AND FUTURE 

RESEARCH DIRECTIONS 

Despite the significant progress in federated 

learning, several open issues and promising research 

directions remain that warrant further investigation 

to unlock its full potential and address its limitations. 

These areas represent fertile ground for future 

innovation and will be critical for the widespread 

adoption of FL in diverse real-world applications. 

7.1. Robustness to Data Heterogeneity and Non-IID 

Data 

While personalized federated learning and various 

regularization techniques have been proposed to 

mitigate the effects of non-IID data, a universally 

robust solution remains elusive. Future research 

should focus on: 

 

● Adaptive Personalization Strategies: 

Developing more sophisticated adaptive 

personalization methods that can 

dynamically adjust the degree of 

personalization based on the client's data 

characteristics, computational resources, 

and the specific task at hand. This could 

involve meta-learning for personalization 

or reinforcement learning to guide 

personalized model updates. 

● Fairness in Non-IID Settings: Ensuring 

fairness across clients, especially when 

data distributions are highly skewed. Non-

IID data can lead to models that perform 

exceptionally well on data from dominant 

clients but poorly on data from minority 

clients. Research is needed to develop 

fairness-aware FL algorithms that can 

guarantee equitable performance across all 

participants. 

● Theoretical Understanding of Non-IID 

Effects: Deepening the theoretical 

understanding of how non-IID data impacts 

convergence, generalization, and privacy 

in FL. This includes developing tighter 

theoretical bounds and more accurate 

predictive models for FL performance 

under various non-IID conditions. 

7.2. Communication Efficiency and Scalability 

Communication overhead remains a major 

bottleneck, especially in cross-device FL with a 

large number of resource-constrained clients. Future 

research should explore: 

 

● Advanced Compression Techniques: 

Developing more aggressive yet lossless or 

near-lossless model update compression 

techniques, including quantization, 

sparsification, and knowledge distillation, 

to reduce the amount of data transmitted 

between clients and the server. 

● Asynchronous and Semi-Asynchronous 

FL: Further optimizing asynchronous and 

semi-asynchronous FL algorithms to 

handle stragglers more effectively without 

compromising model quality or 

introducing significant staleness. This 

could involve dynamic weighting of client 

contributions based on their update 

freshness. 

● Hierarchical Federated Learning: 

Investigating hierarchical FL architectures, 

where multiple layers of aggregation are 

introduced (e.g., local aggregators within a 

region before sending to a central server). 

This can reduce the load on the central 

server and improve communication 

efficiency in large-scale deployments. 

7.3. Enhanced Privacy and Security Mechanisms 

Despite the inherent privacy benefits, FL systems 

are still susceptible to various attacks. Future 

research needs to focus on: 

 

● Lightweight Cryptographic Primitives: 

Developing more efficient and lightweight 

cryptographic techniques, such as secure 

multi-party computation (SMC) and 

homomorphic encryption (HE), that can be 

practically deployed on edge devices 

without prohibitive computational or 

communication costs. 

● Robustness against Adversarial Attacks: 

Designing FL systems that are inherently 

more robust against various adversarial 
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attacks, including model poisoning, data 

poisoning, and inference attacks. This 

involves developing robust aggregation 

rules, anomaly detection mechanisms, and 

secure client authentication protocols. 

● Auditing and Explainability: Enhancing 

the transparency and explainability of FL 

models, particularly in sensitive 

applications like healthcare and finance. 

This includes developing methods to audit 

the contributions of individual clients and 

to explain model decisions in a privacy-

preserving manner. 

7.4. Integration with Emerging Technologies 

Federated learning's potential can be further 

amplified by its integration with other cutting-edge 

technologies: 

 

● FL and Edge AI: Deepening the 

integration of FL with edge computing 

paradigms to enable more intelligent and 

autonomous decision-making at the 

network edge. This includes optimizing FL 

algorithms for deployment on specialized 

edge hardware and developing frameworks 

for seamless FL deployment on edge 

devices. 

● FL and Blockchain: Further exploring the 

synergy between FL and blockchain for 

enhanced security, transparency, and 

incentive mechanisms. Blockchain can 

provide a decentralized and immutable 

ledger for FL operations, facilitating trust 

and accountability among participants. 

● FL and Large Language Models 

(LLMs): Addressing the unique challenges 

of training and deploying LLMs in a 

federated setting. This includes developing 

efficient methods for federated fine-tuning 

of LLMs, managing the massive model 

sizes, and ensuring privacy during the 

training of such powerful models. 

7.5. Real-world Deployment and Standardization 

Moving beyond theoretical advancements, practical 

deployment and standardization are crucial for FL's 

widespread adoption: 

 

● Benchmarking and Evaluation: 

Establishing standardized benchmarks and 

evaluation metrics for FL systems that 

accurately reflect real-world conditions, 

including non-IID data, heterogeneous 

clients, and various attack scenarios. 

● Framework Development: Continuing 

the development of user-friendly and 

robust open-source FL frameworks that 

abstract away much of the underlying 

complexity, making FL more accessible to 

researchers and practitioners. 

● Regulatory and Ethical Guidelines: 

Collaborating with policymakers and 

ethicists to develop clear regulatory 

frameworks and ethical guidelines for FL 

deployment, ensuring responsible 

innovation and addressing societal 

concerns related to data privacy and 

algorithmic bias. 

 

By addressing these open issues and pursuing these 

research directions, federated learning can evolve 

into an even more powerful and pervasive 

technology, driving the next generation of privacy-

preserving and collaborative artificial intelligence 

systems. 

8. CONCLUSION 
Federated learning has firmly established itself as a 

pivotal paradigm in the evolution of artificial 

intelligence, offering a compelling response to the 

dual challenges of data privacy and data 

fragmentation. Since its introduction, FL has not 

only garnered significant academic interest but has 

also seen practical applications across a diverse 

range of industries, including healthcare, finance, 

and telecommunications. Its ability to facilitate 

collaborative model training on decentralized 

datasets without compromising user privacy has 

unlocked new frontiers for AI innovation, enabling 

the development of more robust and personalized 

models. This review has provided a comprehensive 

overview of the federated learning landscape, from 

its foundational concepts and evolutionary trajectory 

to the critical challenges that continue to shape its 

development. We have explored the various 

architectural and algorithmic nuances of FL, 

including the critical distinctions from traditional 

distributed learning, the ongoing efforts to address 

data heterogeneity and the straggler effect, and the 

multifaceted approaches to bolstering privacy and 

security. However, the journey towards seamless 

and widespread adoption of federated learning is far 

from over. The open issues and research directions 

highlighted in this paper underscore the complexity 

and dynamism of the field. The challenges of non-

IID data, communication efficiency, and robust 

security are not merely technical hurdles but 

fundamental research questions that require 

continued and concerted efforts from the global 

research community. The future of federated 

learning will likely be characterized by a move 

towards more adaptive, personalized, and resource-

aware systems that can intelligently navigate the 

complexities of real-world deployments. The 

integration of FL with emerging technologies such 

as edge AI, blockchain, and large language models 

will further expand its capabilities and application 

domains, paving the way for a new generation of 

intelligent, decentralized, and privacy-preserving 

systems. Federated learning represents a significant 
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step forward in our quest to build more responsible 

and effective AI. By embracing a decentralized and 

collaborative approach, FL not only addresses the 

pressing need for data privacy but also democratizes 

access to advanced machine learning capabilities. 

As the field continues to mature, the ongoing 

dialogue between researchers, practitioners, 

policymakers, and the public will be crucial in 

shaping a future where the immense potential of 

federated learning is realized in a manner that is both 

ethically sound and technologically robust. The 

continued exploration of the open issues discussed 

in this review will be instrumental in driving this 

evolution and ensuring that federated learning 

remains a cornerstone of privacy-preserving 

artificial intelligence for years to come. 
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ABSTRACT 

This paper addresses the critical challenge of offline signature verification, a task crucial for authenticating 

documents and identities. Existing deep learning approaches, primarily deep metric learning with Siamese 

networks and two-channel discriminative methods, face limitations. While Siamese networks excel at feature 

extraction, their reliance on Euclidean distance can overlook subtle directional and scaling information, 

hindering the capture of intricate feature relationships. Conversely, two-channel discriminative methods, though 

effective in initial dissimilarity assessment, often suffer from significant feature loss due to early image fusion. 

To overcome these challenges, we propose the Multi-channel Feature Fusion Network , a novel writer-

independent model for handwritten signature verification. The proposed framework leverages a quadruple 

Siamese network and a dual inverse discriminative attention mechanism for robust feature extraction and 

enhancement from both original and inverse grayscale images. These rich, multi-dimensional features are then 

integrated through an innovative channel fusion process. Finally, an ACMix-based discriminative module is 

employed to determine image similarity with high precision. Comprehensive experiments on four diverse 

language signature demonstrate the superior efficacy and promising potential of the framework, affirming its 

advantages over current methodologies. 

Keywords: Offline handwritten signature verification, deep learning, channel fusion 

1. INTRODUCTION 

 In contemporary society, signature handwriting 

verification, as one of the crucial forensic methods, is 

widely applied in various fields such as law, insurance, 

and culture [15,20,10,19,41]. Due to the uniqueness, 

stability, and reliability of signature handwriting, it 

serves as an important basis for authenticating 

documents and confirming identities. However, with the 

continuous advancement of technology, signature 

handwriting examination also faces numerous 

challenges. The origin of signature handwriting can be 

traced back to ancient times when people used various 

symbols and graphics to sign. With the development of 

paper and ink, people began to use handwritten 

signatures. As early as 439 AD, the Roman Empire used 

signatures to verify the authenticity of documents. 

However, it was not until the early 20th century that 

signature handwriting began to attract research attention. 

During this period, disciplines such as psychology and 

statistics began to be applied to the study of signature 

handwriting, providing a theoretical basis for signature 

handwriting examination. 

Signature handwriting plays an important role in 

multiple fields. In the legal field, signature handwriting 

is a crucial basis for confirming the authenticity of 

documents and is also part of the evidence in court. In 

the insurance field, signature handwriting is used to 

identify the authenticity of policies and prevent 

insurance fraud. In the cultural field, signature 

handwriting reflects the artist’s style and personality, 
holding significant value for in-depth research in 
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graphology. With technological progress, signature 

handwriting examination faces many challenges. 

Signature handwriting is susceptible to factors such as 

writing habits, emotions, and environment, making the 

accuracy of handwriting examination complex. 

Furthermore, the development of signature forgery 

techniques also brings certain difficulties to the 

examination work. Considering that the authenticity of 

most current documents still relies on handwritten 

signatures for verification, and the cost of manual 

judgment is too high, there is an urgent need to develop 

an accurate and efficient signature verification 

technology. 

Signature verification technologies are divided into 

online signature verification technology and offline 

signature verification technology based on the input 

method. For online signature verification, researchers 

can obtain dynamic information about the signing 

process, such as stroke trajectories, inclination, and pen 

pressure [16,31,8,9]. In offline signature verification 

technology, researchers can only obtain static 

information, which is signature images captured by 

scanners or cameras [34,17,1,42]. Because static 

information provides less information than dynamic 

information, offline signature verification is more 

challenging than online signature verification. In today’s 
environment, where paper documents are widely used, 

offline signature verification has a more widespread 

application space. Signature verification technology is 

also divided into writer-dependent and writer-

independent methods based on whether it is related to the 

writer. In writer-dependent methods, researchers’ test 
samples depend on training samples, meaning that each 

signatory in the test set has a certain amount of signature 

samples in the training set [21,22,2]. In practical 

applications, it is impractical to collect and train a large 

number of samples for each user. In writer-independent 

methods, the users in the training set and the test set are 

independent of each other [36,32], thus, they are more 

valuable in practical applications. 

Signature forgery methods are classified into three types 

based on the proficiency of forgery: random forgery, 

simple forgery, and skilled forgery [11]. Random forgery 

signatures have no information about the imitated 

person, so they differ greatly from genuine samples. 

Simple forgery involves forged samples that do not 

follow the writing style of the imitated person, having 

some similarity to genuine samples. Skilled forgery is 

performed by professionals who analyze the signature 

characteristics of the imitated person, resulting in highly 

similar forged signatures. For skilled forged samples, 

non-professionals generally cannot distinguish them. 

Therefore, if criminal organizations obtain relevant 

information about the imitated person and meticulously 

forge signatures for criminal activities, this will have 

adverse effects on the original signatory. Furthermore, 

for the writer themselves, signatures written in different 

environments can also vary greatly. Therefore, finding 

the differences between genuine and forged samples will 

be a challenging task. To facilitate researchers’ study of 
offline signature verification methods, many public 

offline signature verification datasets are currently 

available in academia, such as the English CEDAR 

dataset [28], GPDS dataset [24], the BHSig260 dataset 

[7] which includes Bengali and Hindi, and the Chinese 

MSDS dataset [42], ChiSig dataset [37]. 

Before the rise of deep learning, researchers typically 

used traditional image processing methods such as 

feature matching for signature verification. For example, 

references [6] and [30] developed the first offline and 

online signature verification systems; reference [12] 

utilized the stroke directionality of characters for 

directional decomposition, then performed band 

decomposition on the sub-images of each direction, 

using the decomposed sampled signal values as 

handwriting features, and employed feature matching 

methods for writer identification; reference [25] 

performed identity discrimination through multi-channel 

two-dimensional Gabor filtering and other methods. 

Nowadays, researchers are continuously exploring new 

methods for signature handwriting examination, and 

with the rise of deep learning and related technologies, 

reference [3] adopted a Siamese network to extract 

features from two input sample images separately, and 

then used metric learning methods to determine the 

similarity distance between the two signatures, selecting 

a threshold to determine if they were written by the same 

person. This metric learning method has significant 

limitations: on one hand, most metric learning methods 

use Euclidean distance for calculation, and Euclidean 

distance only considers the absolute distance between 

two points, easily overlooking direction and scaling 

information, and not considering the correlation between 

data, thus ignoring the relationships between values 

within feature vectors; on the other hand, its metric 

threshold is solved through an iterative process, which, 

although it can obtain the optimal solution for the current 

dataset, has low generalization ability, and the same 

threshold will have completely different effects on 

different datasets. Therefore, reference [4] proposed 

DeepHSV to address this drawback, using a two-channel 

discriminative method for offline handwriting 

verification. By image fusion, two images to be 

compared are fused into a single image for model input, 
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which can effectively solve the limitations of metric 

learning. However, they directly fuse the images before 

model input, at which point the features of the two 

compared images are not yet very distinct, leading to the 

loss of a large number of fine features between different 

images, thus making it impossible to distinguish 

meticulously forged signatures. Reference [33] proposed 

an inverse discriminative octuple attention mechanism, 

where inverse discriminative images are attached as 

attention to the original images, making the model focus 

more on stroke features, and achieved good results on 

multiple datasets. The limitation of this method is that it 

focuses too much on the features of the original image 

and only uses inverse discriminative features as auxiliary 

judgment information. This paper believes that 

handwriting features can be obtained not only from the 

original image but also from inverse grayscale images, 

which contain a large amount of image features. 

Offline handwriting signature verification technology 

can be regarded as a binary classification task, but it 

differs significantly from traditional image 

classification. The differences are: 1) The similarity 

between the two input images in a handwriting 

verification system is much higher than in other fields, 

and the detailed differences between the two images are 

too sparse; 2) The images are grayscale single-channel 

images; 3) The essence of handwriting verification 

system discrimination is style comparison, and improper 

design can easily lead to overfitting. To address these 

issues, different scholars have proposed different 

solutions, such as IDN [33], TransOSV [18], LGR [23], 

etc. The above methods use CNN or self-attention [33–
34] techniques, which are generally classified into 

different types. However, ACMix proposed in reference 

[13] proves that the two methods have a strong potential 

relationship. This paper uses it as the discrimination 

module of the model, which will make the model focus 

more on the sparse information features of the fused 

images to achieve higher discrimination accuracy. 

This paper addresses the limitations of two-channel 

discriminative methods by designing a Multi-channel 

Feature Fusion Network framework. It employs dual 

inverse discriminative attention for feature extraction 

and enhancement of original and inverse grayscale 

images, integrates the extracted multi-dimensional 

vectors through channel fusion, and finally uses ACMix 

for image similarity judgment. This network model has 

achieved good results on four datasets: CEDAR, BHSig-

B, BHSig-H, and ChiSig, demonstrating the 

effectiveness and generality of the proposed method. 

The main contributions of this paper are as follows: 1) 

Proposed the framework, which enhances the differences 

between genuine and forged images by fusing multi-

Siamese networks to extract multi-dimensional detailed 

features of input images; 2) Improved the inverse 

discriminative attention module, strengthening the 

ability to extract signature features through a dual 

inverse discriminative attention mechanism; 3) 

Conducted experiments on CEADR, BHSig-B, BHSig-

H, and ChiSig datasets, achieving excellent results 

superior to baseline papers and most existing methods. 

1.1 Siamese Network 

Deep metric learning methods primarily involve two 

samples passing through the same network to generate 

sample vectors, after which the distance between these 

two samples is calculated to determine if they belong to 

the same class. This network is known as a Siamese 

network. Siamese networks, also called twin networks, 

are a special neural network structure that can input two 

images for feature extraction, with the two models 

sharing weights. In 1993, Siamese networks were first 

proposed for signature recognition on American checks 

[18]. 

Due to their simple structure and ease of implementation, 

Siamese networks are widely used in image similarity 

measurement. After passing through the same feature 

extractor, the extracted features have strong image 

representativeness. Generally, this network is often used 

to handle verification problems where the two inputs do 

not differ significantly. The network takes a pair of 

samples as input and is trained to make samples with the 

same label closer in the feature space, and samples with 

different labels further apart. Therefore, this network has 

promoted the development of offline signature 

verification. For example: SigNet proposed in reference 

[37], MSDN proposed in reference [23], TransOSV 

proposed in reference [12], etc. The basic network 

framework of a Siamese network is shown in Figure 1: 

where A and B are the two input samples, Network 1 and 

Network 2 are feature extraction networks, and the two 

networks share parameters. After inputting images, 

feature vectors a and b are generated through the feature 

extraction network, and the metric distance between 

samples a and b is calculated using a metric function. 

Finally, the network parameters are optimized using a 

contrastive loss function or other loss functions. 
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Figure 1: Network Structure Diagram 

By generating two feature vectors through a Siamese 

network, and adhering to the principle that images of the 

same category are closer and different images are further 

apart, an optimal threshold can be found by traversing 

the range between the minimum and maximum 

distances. However, the method of traversing to find the 

optimal threshold has a significant limitation: the current 

threshold is obtained by traversing the current training 

and test sets, resulting in very low algorithm scalability. 

Moreover, using Euclidean distance to judge the 

similarity of different images, while Euclidean distance 

only considers the absolute distance between two points, 

easily overlooks information about direction and scaling, 

and does not consider the correlation between data, thus 

ignoring the relationships between values within feature 

vectors. Therefore, a new method is needed to solve this 

problem. 

1.2 Two-Channel Discriminative Network 

Another mainstream offline signature verification 

method is the two-channel discriminative method, which 

fuses two images and directly outputs 0/1 to determine if 

they belong to the same class. The biggest difference 

between this method and the Siamese network is that the 

Siamese network generates vectors from two samples 

through the same network structure and then makes a 

judgment, while the two-channel discriminative network 

fuses the two images into a single two-channel image 

before inputting them into the network, and then inputs 

this single image into a monolithic network to obtain the 

result of whether they are of the same class. In a two-

channel discriminative network, the network does not 

explicitly extract the input features, but measures their 

distance in the first step. This design greatly reduces the 

search parameter space, making two-channel networks 

particularly suitable for signature verification. The 

image similarity calculation method based on two 

channels was proposed by reference [38], and since its 

proposal, it has achieved considerable results in the field 

of offline signature verification. For example, reference 

[6] used two-channel fusion and dual logit output as 

supervision conditions for training in offline signature 

verification. Reference [12] proposed an offline 

signature framework based on two channels and dual 

Transformers, etc. The basic network diagram of a two-

channel discriminative network is shown in Figure 2: 

where A and B are the two input samples, and the 

network model is a feature extraction network. After 

inputting two images, they are first fused into a new 

image C through image preprocessing before entering 

the monolithic network. Then, C is input into the 

monolithic network, and the network output directly 

indicates whether they were written by the same person, 

i.e., 0 or 1. 

 

Figure 2: Structure of 2-channel network 

Essentially, the two-channel discriminative method 

treats image similarity judgment as a binary 

classification method. Through the two-channel 

discriminative network, the calculation of similarity 

distance is performed in the first step of the network, and 

the network directly outputs whether the signatures were 

written by the same person. Compared to the Siamese 

network method, this method significantly reduces the 

search parameter space, effectively speeding up network 

training; on the other hand, the method of directly 

outputting results avoids the limitations of the Siamese 

network’s threshold, and the accuracy will not be 
significantly affected when changing training datasets or 

adding data. Current networks for two-channel 

discriminative methods directly perform fusion on 

original images or after image cropping, i.e., measuring 

the distance on the initial two images. At this point, the 

image features are not yet obvious, and simply fusing 

them will result in the loss of a large number of fine 

features, ultimately leading to poor model performance. 

1.3 Grayscale Processing 

In offline signature verification, this paper inputs two 

single-channel images. Reference [14] also attempted to 

train with three-channel color images, but the effect was 

not as good as grayscale images. In grayscale images, 

different grayscale distributions will have a significant 

impact on the model’s results. For example, black text 
on a white background and white text on a black 

background, different inputs will have a significant 

impact on the training of the same model. This is because 

in signature verification images, the data model only 

needs the feature information of the handwriting strokes, 

and most background information is invalid or even 

harmful. If the background information consists of pixels 

with a value of 0, the result after convolution will not 

change, which has a considerable impact on feature 

extraction and even the model’s output. However, this 
does not mean that white-on-black images are all invalid 

information; they also contain detailed and important 

information. Addressing this issue, reference [30] 

proposed an inverse discriminative network, where the 

network input is a black-on-white image. This network 

enhances the effective information for signature 
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verification through grayscale processing and a multi-

path attention module. The attention module of this 

method extracts features from inverse grayscale images 

and creates an attention module loaded onto the original 

grayscale images, making the model focus more on the 

stroke information of the image. This method 

innovatively extracts features from both black-on-white 

and their inverse grayscale images. However, the focus 

of feature extraction in this method is on the original 

grayscale image, neglecting that its inverse grayscale 

image is not only a tool for auxiliary attention but also 

contains a large amount of handwriting stroke 

information. 

1.4 ACMix 

Convolutional kernels and self-attention are two 

powerful techniques for representation learning, and 

there is a strong potential relationship between them 

because most of the computations in these two 

paradigms are actually performed through the same 

operations. Specifically, a convolution with kernel size k 

× k can be divided into k2 individual 1 × 1 convolutions, 

followed by shifting and summing operations. In 

ACMix, 1 × 1 convolutional kernels are first used to 

project input features into queries, keys, and values, and 

then the attention weights and the aggregation of value 

matrices, i.e., the aggregation of local features, are 

calculated. Therefore, ACMix can elegantly integrate 

these two seemingly different paradigms, enjoying the 

benefits of both self-attention and convolution, while 

having smaller overhead compared to pure convolution 

or self-attention [33]. 

This paper proposes a network structure to address the 

feature loss problem in two-channel discriminative 

networks. It employs a quadruple Siamese network and 

a dual inverse discriminative attention mechanism for 

feature extraction, fuses the extracted multiple subtle 

features through channel fusion, and finally uses a 

combination of self-attention and convolutional 

networks to determine whether it is a genuine sample 

pair. 

2. METHODOLOGY 

 As an end-to-end signature verification system, 

it consists of feature extraction, channel fusion, and an 

ACMix module. A pair of signature images first undergo 

inverse grayscale acquisition, generating a total of four 

images, which are then input into a quadruple Siamese 

network. Then, the grayscale and inverse grayscale 

images of the same image are weighted and calculated 

through a dual inverse discriminative attention module 

to extract a large number of detailed features. Finally, the 

extracted different image representations are fused 

through channel fusion, and a combination of 

convolutional neural networks and self-attention is used 

for discriminative processing to achieve high-similarity 

image discrimination. 

2.1 Dual Inverse Discriminative Attention Module 

The feature extractor of this network adopts a quadruple 

Siamese network structure. This network consists of two 

convolutional blocks, each containing two convolutional 

layers activated by ReLU function. Each convolutional 

layer has a size of 3 × 3, stride of 1, and padding of 1. 

The dimension of each convolutional block is 64, 128. 

The reference image and its inverse grayscale image, and 

the test image and its inverse grayscale image are 

respectively input into the feature extraction network, 

and the networks share weights. Between the grayscale 

image convolutional block and the corresponding 

inverse grayscale image convolutional block, four dual 

stroke attention modules are connected. Each attention 

module connects the convolutional module in the 

discriminative flow and the convolutional module in the 

inverse flow, as shown in Figure 3. 

 

Figure 3: Dual reverse forensic attention module 
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The grayscale image convolutional block and the inverse 

grayscale image convolutional block of the same image 

are simultaneously input into the dual inverse 

discriminative attention module. Among them, 

according to the different moments of output from the 

grayscale image convolutional block and the inverse 

grayscale image convolutional block, two data streams 

enter the shared attention. The internal flowchart of the 

attention module is shown in the right part of Figure 3, 

taking the yellow data stream in the left part as an 

example: The feature vector output from the grayscale 

image convolutional block is input into the upsampling 

structure, which uses the nearest neighbor algorithm for 

upsampling and performs convolution operations with 

Sigmoid activation, outputting g. The inverse grayscale 

image convolutional block outputs h after ReLU. h is 

multiplied by the elements of g, and then h is added to 

produce the intermediate attention measurement h · g + 

h, where “·” denotes element-wise multiplication. The 

subsequent Global Average Pooling (GAP) layer and a 

fully connected layer (FC) with Sigmoid activation 

receive the intermediate attention measurement and 

output a weight vector f. Each channel is multiplied by 

each element of f to generate the final attention (h · g + 

h) × f, which is then output to the second layer of the 

inverse grayscale image convolutional block for 

convolutional processing. This method has two data 

streams, red and yellow, depending on the input and 

output, and the shared attention module parameters are 

shared between them. The dashed boxes in the two 

convolutional blocks also share weights, and the two 

convolutional blocks also share weights. Assuming the 

ReLU output of the grayscale image is x1, and the output 

of the grayscale image convolutional block is y1; the 

ReLU output of the inverse grayscale image is x2, and 

the output of the inverse grayscale image convolutional 

block is y2; the shared convolutional blocks in the 

dashed part are collectively referred to as w. Therefore, 

different data streams have different formulas, 

specifically as shown in equations (1) to (4): 

out1 = h(x1 ) g[w(x2 )] + h(x1 ) (1) y1 = w[out1 × f (out1 

)] (2) out2 = h(x2 ) · g[w(x1 )] + h(x2 ) (3) y2 = w[out2 

× f (out2 )] (4) 

Among them, equations (1) and (2) are for the red data 

stream, and equations (3) and (4) are for the yellow data 

stream. 

In the attention module, this paper processes grayscale 

images and inverse grayscale images separately for 

attention, forming dual inverse discriminative attention.. 

By comparing with IDN’s attention, it is found that 
although IDN has quadruple attention, as the 

convolution operation deepens, the focus of the attention 

module becomes more abstract. In contrast, the 

framework’s attention module, on one hand, introduces 
dual features, creating constraints between attentions, 

enabling accurate focus on stroke edge information even 

in the second layer of attention feature maps; on the other 

hand, by reducing the number of layers, it extracts 

sufficiently detailed features during channel fusion. 

Through the multi-path attention mechanism, the 

important features for signature verification are 

enhanced. 

Since the attention module in this paper connects the 

original grayscale image and the inverse grayscale 

image, the final attention mask will guide the network to 

learn discriminative features for signature verification 

and suppress misleading information. The entire 

framework has 4 attention modules connecting different 

convolutional modules, applying the attention 

mechanism at different scales and resolutions. 

2.2 Multi-channel Fusion 

The two-channel discriminative method fuses two input 

single-channel images into a two-channel image and 

directly outputs whether they are similar to quickly 

obtain results. However, because the two-channel 

discriminative network performs channel fusion in the 

original state of the images, the image features are not 

yet obvious, and simply fusing them will result in the 

loss of a large number of fine features, ultimately leading 

to poor model performance. Therefore, in the 

framework, four images, each with 128-dimensional 

feature information after feature extraction, are fused, 

totaling 512-dimensional feature information. Compared 

to traditional two-channel discriminative networks, our 

framework not only includes the convolutional features 

of the two images to be discriminated but also includes 

the convolutional features of the inverse grayscale 

images of the two images. This method considers more 

channel information during the fusion process, allowing 

the network to capture more information and increasing 

the diversity of fused features. Therefore, in the 

subsequent discrimination stage, this network can 

achieve higher accuracy. 

The proposed framework connects the extracted features 

of the reference image, reference image inverse 

grayscale image, test image, and test image inverse 

grayscale image. Each image has 128 dimensions. After 

passing through the discriminative module, it finally 

outputs 0/1 to determine whether they are the same 

person. Compared to the two-channel discriminative 

method, the multi-channel image formed by multi-
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channel fusion has more fused image features. The 

distance calculation between images changes from one 

positive and one negative sample, totaling two images, 

to 256 dimensions for each positive and negative sample 

to calculate the difference. Because there are more image 

features, the calculated distance is more accurate. 

2.3 Discriminative Module 

In the discriminative module, this paper primarily uses 

the ACMix module, supplemented by two small 

convolutional blocks for discrimination. After feature 

fusion, a 512-dimensional feature vector is obtained, 

with many and large differences between features. To 

accurately extract features, the ACMix module, which 

combines convolution and self-attention, is used for 

feature extraction. 

The 512-dimensional feature representation after 

channel fusion is not directly input into a fully connected 

layer for classification. Instead, it first passes through a 

discriminative module based on a monolithic network 

model [33]. This module performs overall feature 

learning and judgment based on self-attention and 

convolutional networks, finally outputting a 0/1 binary 

classification result. The structure of the discriminative 

module consists of two small convolutional modules and 

one ACMix module. The input of the first small 

convolutional module is the integrated 512-dimensional 

features after channel fusion. Then, the ACMix’s 
convolution and self-attention mechanisms are used for 

feature extraction. Finally, a small convolutional module 

is used for feature summarization, and then it enters a 

multi-layer perceptron for classification. At this point, 

the features entering the multi-layer perceptron are the 

512-dimensional image features extracted by the 

discriminative network, which contain the overall 

difference information between the reference image, 

reference image inverse grayscale image, test image, and 

test image inverse grayscale image. 

Global average pooling is introduced in the multi-layer 

perceptron to reduce network redundancy. To avoid 

overfitting, this paper uses 0.5 Dropout. Finally, the 

entire network will output a Sigmoid-activated feature 

value, generating a judgment probability between 0 and 

1. In the accuracy judgment process, this paper sets a 

probability less than or equal to 0.5 as a forged signature, 

and a probability greater than 0.5 as a genuine signature. 

The loss function uses binary cross-entropy loss, and its 

formula is: 

L = −(1/n) ∑[yi lg(pi ) + (1 − yi )lg(1 − pi )] (5) 

Where yi represents the true label of sample i, 1 for 

positive class, 0 for negative class. pi represents the 

probability that sample i is predicted as positive, and 

similarly, 1 − pi is the probability that the sample is 
predicted as negative. 

3. EXPERIMENT 

The quantity and quality of datasets have a significant 

impact on the model. Currently, with the in-depth 

research of domestic and foreign scholars in the field of 

offline handwriting verification, many public offline 

datasets have been proposed. This paper will use the 

English CEDAR dataset, the BHSig260 dataset 

(including Bengali and Hindi), and the Chinese ChiSig 

dataset for model testing and evaluation. Statistical 

information for various datasets is shown in Table 1. 

The CEDAR dataset is a signature sample dataset in 

English. It consists of samples from 55 signers, with 

each signer having 24 genuine signature samples and 24 

forged signature samples. According to previous work, 

this paper selects samples from 50 individuals for 

training and samples from the remaining 5 signers for 

testing. For each signer, this dataset has 276 reference-

genuine sample pairs and 576 reference-forged sample 

pairs. 

Table 1: Offline signature verification dataset 

Data set  
name 

Language 
Signature 

 type 

Number 
of 
 pictures 

Real to 
fake  
sample 
ratio 

CEDAR English 55 2624 24/24 

BHSig-B Bengali 100 5400 24/30 

BHSig-H Hindi 160 8640 24/30 

ChiSig Chinese 102 10242 -/- 

 

To ensure a balance of positive and negative samples, 

this paper will randomly draw reference-forged sample 

pairs based on the number of reference-genuine sample 

pairs. Therefore, for each signer, this paper will have 276 

reference-genuine sample pairs and 276 reference-

forged sample pairs for training and testing. 

The BHSig260 dataset includes Bengali and Hindi 

datasets, which are treated as two different datasets in 

this paper. The BHSig-B dataset contains Bengali 

signature images from 100 signers. Each signer has 24 
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genuine signatures and 30 forged signatures. Based on 

previous experience, this paper randomly selects 

signatures from 50 signers for training, and signatures 

from the remaining signers for testing. The BHSig-H 

dataset contains Hindi signature images from 160 

signers. Each signer has 24 genuine signatures and 30 

forged signatures. Similarly, this paper will randomly 

select signatures from 100 signers as the training set to 

train the model, and signatures from the remaining 60 

signers as test data. For each signer in the above two 

datasets, this paper also randomly draws 276 reference-

genuine sample pairs and 276 reference-forged sample 

pairs for training and testing. 

Reference [11] constructed a novel Chinese document 

offline signature forgery detection benchmark dataset, 

ChiSig, which includes all tasks such as signature 

detection, restoration, and verification. The dataset 

consists of clean handwritten signatures, synthetically 

interfered handwritten signatures, and synthetic 

documents with handwritten signatures. The authors 

randomly generated 500 names and then asked 

volunteers to sign according to certain rules to obtain 

clean signature data, which can be used for signature 

verification tasks. Because the number of volunteers is 

greater than the number of names, there are cases where 

different writers have the same name, which poses a 

great challenge for signature verification. Afterwards, 

the authors obtained scanned documents that can be used 

as synthetic backgrounds from public resources such as 

the XFUND dataset, Chinese national standards, and 

patents. For this dataset, this paper randomly draws 250 

signatures as the training set and 250 signatures as the 

test set. For each name, signatures written by the same 

volunteer are treated as genuine sample pairs, and 

signatures written by different volunteers are treated as 

forged sample pairs. For dedicated forged data, they are 

only treated as forged sample pairs, and forged data are 

not treated as genuine sample pairs. To ensure data 

balance between genuine and forged sample pairs, this 

paper removes redundant sample pairs. 

3.2 Evaluation Metrics 

For the CEDAR and BHSig260 datasets, this paper will 

follow the settings in reference [30] and use False 

Rejection Rate (FRR), False Acceptance Rate (FAR), 

and Accuracy (ACC) to comprehensively evaluate the 

framework and compare it with other existing methods. 

FRR is defined as the ratio of the number of false 

rejections to the number of genuine samples. FAR is 

defined as the ratio of the number of false acceptances to 

the number of forged samples. ACC is defined as the 

ratio of the number of correctly judged samples to the 

total number of samples. 

For the ChiSig dataset, this paper uses the evaluation 

metrics proposed by the dataset authors: Accuracy, 

Equal Error Rate (EER), and True Acceptance Rate 

(TAR) for comparison. EER evaluates the balance point 

where FRR equals FAR; the lower the EER, the better 

the model performance. The calculation method for TAR 

is shown in equations (6) to (8), and TAR is only 

calculated when the False Acceptance Rate (FAR) 

equals 10−3: 

FAR = (Number of False Acceptances) / (Number of 

Forgeries) (6) FRR = (Number of False Rejections) / 

(Number of Genuine Samples) (7) TAR = 1 − FRR (8) 

3.3 Comparative Experiments 

To verify the model’s effectiveness, this paper selects the 
latest deep learning models for comparison based on the 

current development of handwriting verification tasks, 

namely SigNet (2017arXiv) [37], IDN (2019CVPR) 

[30], DeepHSV (2019ICDAR) [6], SDINet (2021AAAI) 

[13], SURDS (2022ICPR) [39], 2C2S (2023EAAI) [40], 

TransOSV (2022ICME) [12]. These models include 

methods combining Siamese networks with metric 

learning, as well as methods using two-channel 

discrimination. The comparison results are sufficient to 

illustrate the advantages of the proposed model proposed 

in this paper. For convenience of observation, the 

optimal solution is bolded, the suboptimal solution is 

underlined, and the third best solution is wavy. CEDAR, 

BHSig-B, and BHSig-H are shown in Table 2, Table 3, 

and Table 4, respectively. The results for the ChiSig 

dataset will be introduced in Section 3.4. 

In the experimental results on the CEDAR dataset, the 

proposed model achieved 100% accuracy. The main 

reason is that this dataset has a small number of samples, 

a simple structure, and large differences, so many 

methods have achieved good results on this dataset. 

Comprehensive analysis shows that model’s ACC 
improved by 3.62% and 1.75% compared to IDN and 

SDI, respectively, and achieved 100% like SigNet, 

DeepHSV, and 2C2S. In the BHSig-B dataset, the 

experimental results show that the model has a greater 

advantage than current mainstream offline handwriting 

verification algorithms, achieving an accuracy of 

95.61%, and this is also proven in the comparison of 

FRR and FAR, reaching optimal or suboptimal. 

Compared to IDN, model’s ACC improved by 0.29%. 
Compared to the latest algorithms 2C2S and TransOSV, 

it improved by 2.36% and 5.56%, respectively. This is 
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sufficient to prove the superiority of the model proposed 

in this paper. 

Table 2: Comparison on CEDAR dataset (%) 

Model name FRR FAR ACC 

SigNet (2017arXiv) 0 0 100.00 

DeepHSV (2019ICDAR) - - 100 

IDN (2019CVPR) 2.17 5.87 96.38 

SDINet (2021AAAI) 3.42 0.73 98.25 

2C2S (2023EAAI) 0 0 100.00 

OURS 0 0 100.00 

 

Table 3 Comparison on BHSig-B dataset (%) 

Model Name FRR FAR ACC 

SigNet (2017arXiv) 13.89 13.89 86.11 

DeepHSV 
(2019ICDAR) 

— — 88.08 

IDN (2019CVPR) 5.24 4.12 95.32 

SDINet (2021AAAI) 7.86 3.30 94.42 

SURDS (2022ICPR) 5.42 19.89 87.34 

2C2S (2023EAAI) 8.11 5.37 93.25 

TransOSV 
(2022ICME) 

9.95 9.95 90.05 

OURS 3.86 3.84 95.61 

 

Table 4 Comparison on BHSig-H dataset (%) 

Model Name FRR FAR ACC 

SigNet (2017arXiv) 15.36 15.36 84.64 

DeepHSV (2019ICDAR) — — 86.66 

IDN (2019CVPR) 4.93 8.99 93.04 

SDINet (2021AAAI) 3.77 6.24 95.00 

SURDS (2022ICPR) 8.98 12.01 89.50 

2C2S (2023EAAI) 9.98 8.66 90.68 

TransOSV (2022ICME) 3.39 3.39 96.61 

OURS 4.89 4.89 95.70 

Similar to CEDAR and BHSig-B, our model also 

achieved good results on the BHSig-H dataset. 

Compared to the latest algorithms, model achieved an 

accuracy of 95.7% on the BHSig-H dataset, although it 

is not the optimal result, its FRR is third best, and the 

others are suboptimal. Furthermore, compared to the 

optimal, model’s accuracy is only 0.89% lower, while in 
BHSig-B, compared to the optimal model TransOSV in 

BHSig-H, our model achieved a 5.56% lead in accuracy. 

This is sufficient to show that model’s generalization 

ability is superior to TransOSV. 

3.4 Ablation Experiment 

In addition, this paper conducted ablation experiments 

on the ChiSig dataset. InceptionResnet is the baseline 

model provided in the dataset paper [11]. This paper 

conducted comparative experiments by reproducing 

SigNet and IDN code. 

As shown in Table 5, the baseline IDN compared with 

its channel fusion method, the channel fusion method 

improved the accuracy by 0.9% compared to the original 

method; the dual inverse discriminative attention 

expanded the information of the inverse grayscale image, 

providing more detailed information during channel 

fusion, which improved the accuracy to 88.96%, an 

increase of 3.24% compared to channel fusion. The 

ACMix discriminative structure further improved the 

model’s accuracy to 95.23%. 

Table 5 Ablation experiment on ChiSig dataset (%) 

Model Name EER TAR ACC 

InceptionResnet 6.60 28.10 93.60 

SigNet — — 82.28 

IDN (Baseline) 17.91 10.50 84.82 

IDN (Channel Fusion) 14.81 9.61 85.72 

IDN (Channel Fusion + Attention) 11.38 7.82 88.96 

OURS (No Inverse Gray, No Attention) 11.78 32.49 88.09 

OURS (No Inverse Gray, Single 

Attention) 
10.83 — 89.20 

OURS (Inverse Gray, No Attention) 7.84 — 92.14 

OURS (Full Model) 5.19 28.96 95.23 

 

To demonstrate the impact of inverse grayscale images 

and corresponding attention on the results, this paper 
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also conducted experiments by removing grayscale 

images and attention. ‘No inverse grayscale image’ 
means the model only inputs reference images and test 

images. ‘Single attention’ means that in the dual 
attention module, the input for dot product and 

upsampling is provided by itself, and everything else is 

consistent with the final model.  

Table 6 Main parameters on ChiSig dataset (%) 

Model Name FRR FAR ACC Notes 

IDN (Baseline) 10.46 17.91 84.82 
Original 
implementation 

IDN (Channel 
Fusion) 9.61 18.97 85.72 

+Feature 
combination 

IDN (Channel 
Fusion + Attention) 

7.82 14.27 88.96 
+Attention 
mechanism 

OURS (No 
Grayscale Inversion, 
No Attention) 

21.91 17.26 88.09 Basic version 

OURS (No 
Grayscale Inversion, 
Single Attention) 

15.59 16.30 89.20 +Attention layer 

OURS (Grayscale 
Inversion, No 
Attention) 

6.90 17.18 92.14 
+Image 
preprocessing 

OURS (Full Model) 5.34 5.34 95.23 
Complete 
configuration 

For no inverse grayscale image, after introducing single 

attention, the accuracy increased by 1.11%, while 

introducing inverse grayscale images increased the 

accuracy by 4.05%. Experimental results show that the 

addition of attention and inverse grayscale images is 

feasible, and the addition of inverse grayscale images has 

a greater improvement effect than the addition of 

attention. 

This ablation experiment proves the rationality of the 

proposed method. In addition, to facilitate future 

researchers to compare using FRR and FAR metrics, this 

paper also calculated the FRR and FAR metrics of our 

proposed model on the ChiSig dataset, as shown in Table 

6. 

3.5 Cross-Language Experiment 

Furthermore, this paper also conducted cross-language 

tests. In this work, CEDAR, BHSig-B, BHSig-H, and 

ChiSig, four different languages, were used for testing. 

This paper trained the model using the training set of one 

language and tested it on the training sets of the 

remaining languages. For example, this paper trained the 

model on the BHSig-B training dataset and tested it on 

the BHSig-H test dataset. The division of training and 

test data is the same as in the experiments on each 

independent dataset. Table 7 shows the accuracy of 

cross-language tests, where rows correspond to training 

languages and columns correspond to test languages. 

Table 7 shows that cross-language signature verification 

performance rapidly declines. This paper believes that 

the essence of an offline signature verification system is 

style feature matching. 

Each person’s signature is closely related to their writing 
style habits, and different language styles have different 

writing habits, leading to the inability of the current 

dataset’s learned style to be applied to other datasets. The 
accuracy of the BHSig-B dataset and BHSig-H dataset is 

higher than other datasets, possibly because the writing 

styles of Hindi and Bengali are more similar. 

Table 7 Cross-language test (%) 

Training Set → Test 
Set 

CEDAR 
BHSig-
B 

BHSig-
H 

ChiSig 

CEDAR 100.00 48.76 49.89 57.48 

BHSig-B 64.86 95.61 82.79 63.71 

BHSig-H 50.11 86.27 95.70 20.00 

ChiSig 54.60 70.02 55.37 95.23 

4. CONCLUSION 

This paper proposes a novel offline handwriting 

verification model, for handwritten signature 

verification in writer-independent scenarios. This model 

first extracts features through two layers of 

convolutional networks and a dual attention module, 

then performs feature fusion through channel fusion, and 

finally uses the ACMix discriminative module to 

determine the similarity of multiple images. It uses an 

inverse supervision mechanism and a dual attention 

mechanism to solve the problem of insufficient detailed 

feature information in traditional channel fusion 

methods. In testing, by inputting reference signature 

images and test signature images, the model directly 

outputs whether the test signature is genuine or forged. 

Experimental results demonstrate the advantages and 

potential of the proposed method. Future work will focus 

on research into cross-language signature verification 

and recognition. 
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